
Compute & Memory Optimizations for  
High-Quality Speech Recognition on  

Low-End GPU Processors 
Kshitij Gupta and John D. Owens 

Department of Electrical & Computer Engineering, University of California, Davis 
One Shields Avenue, Davis, California, USA 
{kshgupta,jowens}@ucdavis.edu 

 
Abstract�—Gaussian Mixture Model (GMM) computations in 

modern Automatic Speech Recognition systems are known to 
dominate the total processing time, and are both memory 
bandwidth and compute intensive. Graphics processors (GPU), 
are well suited for applications exhibiting data- and thread-level 
parallelism, as that exhibited by GMM score computations. By 
exploiting temporal locality over successive frames of speech, we 
have previously presented a theoretical framework for modifying 
the traditional speech processing pipeline and obtaining 
significant savings in compute and memory bandwidth 
requirements, especially on resource-constrained devices like 
those found in mobile devices.  

In this paper we discuss in detail our implementation for two 
of the three techniques we previously proposed, and suggest a set 
of guidelines of which technique is suitable for a given condition. 
For a medium-vocabulary, dictation task consisting of 5k words, 
we are able to reduce memory bandwidth by 80% for a 20% 
overhead in compute without loss in accuracy by applying the 
first technique, and memory and compute savings of 90% and 
35% respectively for a 15% degradation in accuracy by using the 
second technique. We are able to achieve a 4x speed-up (to 6 
times real-time performance), over the baseline on a low-end 
9400M Nvidia GPU.  

I. INTRODUCTION 
A paradigm shift is under way in the computing world 

where both hardware (processor architectures) and software 
(programming models) are moving away from sequential to 
parallel computing. This shift is being driven by the need for 
more compute power required for processing current and 
emerging compute workloads. Amongst them, an unlikely 
front-runner has emerged in the form of graphics �– used in 
games for entertainment, and perhaps more importantly as a 
means of providing a rich user experience �– catapulting the 
GPU to one of the most essential components in any consumer 
electronic system. 

The incorporation of unified shaders and programming 
languages like CUDA [1] and OpenCL [2] has extended the 
potential use of the GPU to non-graphics workloads that 
exhibit data- or thread-level parallelism. Over the years, 
GPGPU programming has made several strides and there are 
very few application domains that have yet to see benefit from 
using the GPU [3]. However, moving applications that have 
been optimized for one processor family (CPU) onto another 
(GPU) is often times a non-trivial task, requiring a re-design 

of the application to suit the underlying processor architecture 
and programming model.  

To this end, a majority of the work in literature has to date 
primarily focused on suggesting modifications for the sole 
purpose of extracting maximum speedup. The most 
constrained part in any product today, however, is the memory 
system. Unlike the past where discrete GPUs were more 
popular for desktop systems, the recent trend towards 
widespread deployment of portable electronics is necessitating 
a move towards integrated GPUs, heterogeneous processors, 
which are based on a unified memory architecture (CPU and 
GPU SoC) like the NVIDIA Tegra [4] and AMD Fusion [5]. 
As the CPU and GPU reside on the same die and share the 
same physical memory, a higher memory access contention is 
bound to happen in these systems, which will lead to further 
exasperation of the memory bottleneck when data is requested 
simultaneously by these two processors. We therefore believe 
that in order for the full potential of GPUs to be realized (not 
just limited as a co-processor, but an applications processor) 
in such platforms, a focus on optimizing memory accesses 
must be made for achieving highly efficient systems in the 
future.  

In this paper we focus on both compute and memory access 
patterns of an important form of Natural User Interface (NUI) 
that will play a central role in how we interact with 
technology �– Automatic Speech Recognition (ASR). High-
quality, continuous speech recognition is compute- and 
memory-bandwidth-intensive, requiring 10's of GFLOPs of 
compute and 100's of MB/sec of bandwidth, consuming 
significant system resources especially for an �‘always on�’ 
speech-driven interface. While the computations within the 
ASR system are a good fit for the data- and thread-level 
parallelism provided by the GPU, the unmodified CPU 
formulation of the speech pipeline requires far higher memory 
accesses, making ASR a good reference application for our 
exploration. More specifically, we focus on the core compute- 
and memory-bandwidth-intensive portions in the ASR 
pipeline related to GMM computations in this paper. 

As speech-driven interfaces are best suited in mobile, on-
the-go scenarios, our optimizations are aimed at addressing 
some of the key challenges that are a part of small form-factor 
devices �– limited compute, memory bandwidth, and stringent 
power consumption requirements. Since ultra-mobile 
GPGPU-capable processors found in smartphones and tablets 



are not yet available for mainstream developer consumption, 
we limit our current focus to the lowest-end GPU processor 
available, NVIDIA�’s 9400M processor.  

The remainder of the paper is organized as follows. We 
begin by discussing in greater detail specific architectural 
challenges GPUs exhibit, especially in the memory context, in 
Section II. In Section III, we provide a brief overview of ASR 
followed by our motivation and a detailed description of 
modifications for fast GMM compute in Section IV. We 
present implementation details of our GMM compute routines 
showing significant savings in  both compute and memory 
bandwidth on a 5k-word dictation task in Section V, followed 
by a discussion along with a comparison of this work with 
other known GPU implementations in Section VI. We 
conclude by pointing to future directions of our work. 

II. MEMORY: A CRITICAL RESOURCE 
A major distinguishing factor between CPU and GPU 

processors is the difference in ratio of area devoted to 
compute and memory resources. While the CPU is designed 
for handling highly irregular workloads, modern GPUs are 
architected as throughput machines that are well suited for 
large workloads that present a high degree of data- and thread-
level parallelism. This fundamental difference in the kind of 
workload these processors handle leads to a distinct 
architectural choice: unlike the traditional CPU which focuses 
on latency hiding through a hierarchy of large on-chip caches 
and out-of-order execution for extracting parallelism from 
sequential workloads, the GPU architecture is comparatively 
simple, one that devotes a significant portion of on-chip 
silicon to compute resources with small caches and special-
purpose memories. 

Although techniques to hide memory latency differs 
between the CPU and GPU, it must be noted that due to small 
caches on the GPU, lack of support for temporal locality 
requires that data be fetched from global memory1. Like other 
aspects of GPU programming where a greater onus of 
extracting performance is left to the programmer (rather than 
the compiler) by providing low-level control to certain 
elements in the processor, extraction of temporal locality in 
the case of the GPU is also left to the programmer. This is 
especially important since access to global DRAM memory is 
costly both in terms of performance (often the limiting factor 
in achieving peak throughput performance) and power 
(contributing a significant percentage of total power drawn in 
embedded systems).  

As the cost of memory access is high, an ideal system 
would have a higher ratio of compute-to-memory access 
(FLOPS/Byte). We refer to this ratio as the arithmetic 
intensity factor. The degree of arithmetic intensity is 
oftentimes beyond the control of the programmer, being 
dependent on the algorithm instead, which the programmer 
must once again try to work around, if possible. 

                                                 
1 The GeForce 9400M GPU we use in this study does not have a L2 cache and therefore 
has no way of exploiting temporal locality, requiring data to be loaded from DRAM for 
every frame of data processed; the newer NVIDIA Fermi GPU family, however, does 
have an L2, albeit a fraction of the size of modern CPUs. 

Lastly, as chip architectures and programming models have 
evolved, it is becoming easier to implement larger portions of 
an application on the GPU. However, there is still a significant 
limitation in realizing entire applications as not all portions of 
an application benefit from GPU-like architectures. The CPU 
and GPU have traditionally been linked by slow system 
interfaces like PCI-Express, whose memory throughput is 
significantly lower, and data transfer latencies quite often 
larger than the speed-up obtained by offloading a task to the 
GPU, thus limiting the usefulness of application deployment 
using the GPU. 

We see heterogeneity moving from the board-level to the 
chip-level as the solution to this problem, with both CPU-
GPU on the same die (like NVIDIA�’s Tegra and AMD�’s 
Llano processors), and a dedicated communication link 
between the two (like in Intel�’s Sandy Bridge family) as a 
natural evolution to platform architectures. This change, while 
addressing communication issues between CPU and GPU, 
will introduce a different kind of bottleneck �– as the number 
of number I/O pins on a chip is unlikely to change due to 
economical and practical considerations, these high-
performance heterogeneous processors will lead to a greater 
contention between the CPU and GPU for memory accesses. 
In effect, the cost of memory transactions is likely to remain 
constant while the cost of compute gets increasingly cheaper. 
Application performance will therefore not be limited by 
compute capabilities, but memory. 

Due to these reasons, it is no longer sufficient to design or 
modify an application/algorithm without studying and 
optimizing for memory bandwidth and access patterns. In the 
remainder of this paper, through an example ASR application, 
we present systematic modifications to the traditional 
algorithm pipeline relating to the log-likelihood score 
computations in the Acoustic Modeling phase, and show how 
these modifications leads to an efficient system, while 
addressing all aspects discussed in this section. 

III. EXAMPLE APPLICATION: AUTOMATIC SPEECH 
RECOGNITION 

Several techniques have been developed over the past few 
decades for performing computer-based speech recognition, 
often referred to as Automatic Speech Recognition (ASR). 
Out of these techniques, Hidden Markov Modeling (HMM) 
and Artificial Neural Networks (ANN)-based approaches have 
stood-out for continuous, naturally spoken speech by yielding 
fairly accurate results. The goal of any ASR system is to 
classify incoming voice patterns into a sequence of most 
likely spoken words with the help of trained models that are 
compiled offline. The problem of obtaining this sequence of 
words can be represented by the following equation: 

 
 Eq. 1 

 
where,  is the posteriori probability of observing the 
observation vector given a word, and  is the a priori 
probability of observing a word. Word and sequence-of-word 
probabilities,  are computed offline on large sets of text 



corpora that contain all words the system is designed to 
recognize. In N-gram systems, these probabilities are 
represented as probabilities of word tuples (1, 2, .. N). Since 
the word and language knowledge sources are built offline, 
most operations in this part of the system rely on memory 
look-ups.  

The computation of posteriori probability, , is 
performed during run-time giving the probability of speech 
segments matching one of the acoustic sounds. In a HMM-
based system, like the one used in this research, this posteriori 
probability is modeled by HMMs. Every word could 
theoretically be represented by its own HMM, but that would 
yields poor results for dictionaries with more than tens of 
words due to insufficient training data. Further, as speech can 
be represented by a sequence of basic sound units, phonemes, 
there would be a lot of redundancy in computation. 

For this reason, words in most high-end systems are 
modeled by their corresponding phonetic sequences, where 
every phoneme is represented by a HMM, each modeled by a 
3- or 5-state Bakis topology. States within the HMM represent 
sub-phonetic (acoustic) sounds that are statistically modeled 
by a mixture of Gaussians, often referred to as the Gaussian 
Mixture Model (GMM). A collection of GMM�’s is referred to 
as the Acoustic Model (AM). It should be noted that the 
granularity of distribution within the GMM plays an important 
role in determining the robustness, accuracy, and the nature of 
speech that the system can decipher (discrete or continuously 
spoken words). Gaussian likelihood probability computation 
is compute-intensive, and consumes a majority of processing 
time. 

All knowledge sources in the system are laid out in a 
hierarchical manner: language, words, phonemes, and 
acoustics. Speech is processed in frames that are produced in 
10 msec intervals. The process of generating valid hypotheses 
consists of two major phases as shown in Fig. 1(a). The first 
phase involves information flow: lists of speech units that can 
be hypothesized for the current frame based on information 
from prior frames are propagated from higher level knowledge 
sources to lower levels sources. The second phase involves all 
compute operations related to probability generation, look-up 
and pruning with a set of all possible hypothesized words for 
the current frame. This process is performed iteratively for 
every frame, and at the end of the spoken utterance, the best 
scoring path of all possible spoken words is output as the final 
sequence of recognized words. 

Although each step in Fig. 1(a) is sequential with either 
data or information coming from previous stages, there is 
enormous parallelism within every stage of both phases due to 
limited data dependencies within each stage. Effectively, both 
generate and score phases allow for efficient extraction of 
thread- and data-parallel operations on modern parallel 
processors like the GPU, and hence are well suited for our 
application. 
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Fig. 1.  A conceptual diagram representing a typical ASR pipeline is depicted 
in (a) while our modified pipeline is shown in (b).  

A. GMM Compute Overview 
The Acoustic Modeling knowledge source is a collection of 

all HMM states for a given target vocabulary, with each state 
being represented by a Gaussian Mixture Model (GMM). 
Every GMM comprises of a group of multi-variate Gaussians, 
i.e. multi-dimensional Gaussians. For the ASR case, the 
dimensions can be approximated to be independent from one 
another, thereby simplifying the Gaussian co-variance matrix 
into a diagonal one. The score for GMM g over M mixtures, 
each with a weight of W over D dimensions, is computed by 
Eq. 2. 

 

This computation can be simplified by taking the log on both 
sides, thus replacing exponent and division operations by 
addition and multiplication. Upon pre-computing constant 
terms that don�’t rely on speech features generated during run-
time, x, log-likelihood computation, score�’, can be reduced to 
Eq. 3. 

 

 
where,  
 

K =  

 
 

 

Eq. 2 

Eq. 3 



 
 
The summation of scores for all mixtures transforms from an 
addition to a log-addition (addition in the log domain). As log-
likelihood scores have a small dynamic range, they are multi-
plied by a scaling factor, f, to linearly magnify the dynamic 
range. The final simplified equation is shown in Eq. 4. 
 

 

 
where, . 

 
In summary, all operations are reduced to multiplication and 
summation operations. Further optimizations are possible on 
the GPU as these operations can be fused into a single 
multiply-add operation, further reducing the arithmetic 
intensity. Every memory load therefore corresponds to a 
single arithmetic instruction. 

IV. OPTIMIZATIONS FOR GMM COMPUTE 

A. Motivation 
One key challenge for efficient implementation of ASR on 

lower-end, low-cost devices is memory accesses �– both 
memory size and access patterns. The ASR computing 
workload has been found to have low IPC, and high L2 miss 
rates that prove detrimental in realizing efficient systems [7, 
8]. While modern desktop systems now have enough area 
devoted for larger caches (measured in MBytes) that can help 
mitigate performance hit due to cache misses, it is unlikely 
that this will happen in low-end processors aimed at small 
form-factor devices in the near future. Further, workloads on 
GPU-like processors are likely to continue to necessitate 
larger area to compute resources and lesser to memory. The 
only solution for addressing these challenges in the context of 
ASR was for us to re-visit the traditional pipeline and explore 
modifications that fit well within the parallel processing 
paradigm, with little impact to accuracy. 

From Fig. 1(a), the flow between stages is inherently 
sequential, with the current stage requiring information from 
the previous stage. Theoretically, it is possible to de-couple 
the sequential nature by ignoring the feedback lists, and 
following a brute-force approach �– computing all units of 
speech at every stage for every frame of speech input. If this 
approach was followed, it would be possible to theoretically 
�‘batch-process�’ frames, processing several frames for every 
load of data from various knowledge sources. The size of 
these knowledge sources, however, is non-trivial (of the order 
of 100�’s of MB for large systems), and would incur significant 
overhead in terms of both compute and memory bandwidth if 
the entire knowledge source was read for every batch of 
frames to be processed. On lower-end GPU-like processors 
that are constrained for both memory and compute resources, 
this is not a feasible solution. Managing active data through 
the use of feedback lists is therefore an important part for 

realizing practical systems that can be deployed in real-world 
scenarios.  

In its most simplified form, with pre-computations and re-
arrangement of likelihood scores of multi-variate Gaussians 
with a diagonal co-variance, the operations in GMM compute 
can be reduced to one arithmetic operation (tens of cycles) per 
every memory load (hundreds of cycles of latency) as shown 
in Section III. In order to achieve maximum benefit from 
GPU-like parallel architectures, the arithmetic intensity of 
these operations must be improved to address the disparity 
between memory and compute operations �– the more the 
number of operations that can be performed per memory load, 
the better would be the utilization of underlying hardware 
compute resources. 

Lastly, as stated earlier, caches play an important role in 
helping achieve good performance on CPU-based systems. 
The lack of memories that provide temporal locality of data 
on-chip in GPU-like processors is perhaps the most important 
reason for revisiting the traditional ASR pipeline, since for 
every frame of speech, data needs to be loaded from main 
memory.  

B. Theoretical analysis & suggested modifications 
All issues mentioned above can be resolved with one 

insight: the nature of temporal locality within successive 
frames of speech input. An outline of a theoretical analysis of 
this approach [6]. In this section we provide greater details of 
how the theoretical analysis could be used, through simple 
modifications showing how techniques that have been 
successfully employed on the CPU can be successfully 
extended with minor modifications on the GPU. While certain 
aggressive optimizations can lead to significant reduction in 
memory bandwidth requirement by increasing compute 
overhead significantly, on lower-end processors, both memory 
bandwidth and compute resources are scarce and therefore one 
parameter cannot be optimized at the cost of the other. A 
balance is essential in realizing an efficient system. Our 
modifications were therefore aimed at addressing these issues 
without significantly increasing compute overhead from our 
baseline, while drastically reducing memory bandwidth 
requirements with minimal impact on final recognition 
accuracy.  

B.1 Modification # 1: Frame-Level 
The rate of change in the speech signal over short periods 

of time can be slow. Successive frames, which represent 10 
msec segments of speech, can sometimes be approximated as 
being similar. These similar frames can be assumed to provide 
minimal additional information about the voice, and can 
therefore be ignored. This is the first-level of approximation 
that is often used in a few speech systems to reduce the 
computational intensity of operations in the GMM likelihood 
computation phase. While this down-sampling does help in 
reducing the compute load, it quickly introduces error beyond 
skipping every 3rd frame. Amongst the exploration by Chan et 
al., this was the least promising technique [9]. Skipping is also 
detrimental in noisy conditions as signal variations are much 
larger than in clean-speech conditions. 

Eq. 4 



Since our goal is to use GPUs without significantly 
increasing error rate, we would like to minimize 
approximations with acceptable degradation in accuracy. We 
therefore studied the �‘lifetime�’ of every Gaussian in the model 
to understand the locality pattern. To our surprise, while there 
is a lot of variation over successive frames as new hypotheses 
are formed in the word and language models, good scoring 
states continue to remain active for several frames. 
Specifically, from our analysis on the Resource Management 
1 (RM1) corpus, we found the average lifetime (number of 
successive frames for which a GMM is active) was greater 
than 10 frames. 

From this observation, we concluded that significant 
temporal locality existed at the frame level. Given the high 
average lifetime, we could assume that once a Gaussian is 
activated, it would be safe to assume it is active for a fixed 
number of future frames. However, as can be seen in Fig. 2, 
many states also have a small lifetime, which means a 
significant compute overhead could be incurred when dealing 
with Gaussians with smaller lifetimes.  

 

(a) (b) 

(c) (d) 
 

Fig. 2. Histogram of lifetime of GMMs active over successive frames over 
one utterance consisting of 500 frames of speech over different binning 
ranges. From (a) & (b), there are many instances when GMMs remain active 
for more than 10 frames. However, from (c) & (d), many GMMs also have 
short life-spans and accounting for these GMMs is critical to minimize the 
compute overhead. 
 

As it is not possible to predict which GMMs are likely to 
live longer, a balanced approach is required that can account 
for both small and long lifetimes. Therefore, instead of 
assigning a fixed lifetime, we use a dynamic chunk-based 
activation scheme, limiting the frames for which a Gaussians 
can be active in successive frames to the chunk boundary. At 
any frame within a chunk if a Gaussian is activated by the 
higher layers, it is deemed active for the rest of the chunk. We 

refer to our dynamic, chunk-based look-ahead, as Acoustic 
Modeling Look-ahead (AML).  

A GMM activated at the boundary of the chunk and active 
throughout represents the best-case scenario for both memory 
and compute for AML, while a GMM active in the first frame 
but inactive for the rest represents the worst-case compute 
scenario as additional frames that would otherwise not be 
computed would have already been processed. As GMMs are 
activated closer to the chunk boundary, a lesser savings in 
memory bandwidth is achieved. The AML process is shown 
for a few frames in Fig. 3. With this technique we could 
theoretically obtain 80% savings in memory bandwidth with 
no loss to the accuracy, at the cost of 20% increase in compute 
overhead for a chunk size of 8 frames, over the RM1 speech 
corpus [6].  
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Fig. 3. An example of Acoustic Modelling Look-ahead (AML) is shown, with 
chunk size of 4 frames. For each frame, an empty block represents an inactive 
GMM, a greyed block represents an active GMM, and a shaded block 
represents an inactive GMM that is deemed active due to AML. The GMM is 
accessed from main memory only during the first frame in which it is active 
within a chunk, represented by bold outlined blocks. The colours of these 
blocks represent the frame number within the chunk when they are read from 
memory. 

B.2 Modification # 2: Gaussian-Level 
While the incorporation of our AML technique reduces the 

memory bandwidth requirement, there is a compute overhead 
associated with this optimization. To address this, we looked 
at other techniques which are used for reducing compute 
workload of GMM computations, amongst which one 
technique stood out. It is based on the nature of GMM 
computations where-by both the context-independent (CI) and 
context-dependent (CD) models are combined to form the 
Acoustic Model. CD-GMMs are specific acoustic instances of 
their CI-GMMs catering to left and right contexts of phonetic 
sound, implying that several CD-GMMs correspond to a 
single CI-GMM. Conversely, every CI-GMM is a generic 
version of multiple CD-GMMs. This information is used to 
construct a two-pass approach wherein the first pass is on the 
coarser, CI-GMM data that help narrow down the CD-GMMs 
to evaluate in a system based on the score of their CI-GMM 
computer-parts. If a CI-GMM scores well relative to others for 
a given frame, CD-GMMs corresponding to it could be worth 
computing, and if the score is below a certain threshold, CD-
GMMs corresponding to those CI-GMMs could safely be 
approximated to CI-GMM scores without severe 
repercussions to the accuracy of the system. 



In order to extend the AML approach, we analyzed the 
lifetime of CI-GMMs. We observed that CI-GMMs have 
significantly smaller lifetimes due to a tight pruning threshold. 
So the AML approach of a blind look-ahead cannot be used as 
is, since a CI-GMM tends to be sporadically active leading to 
a lot of dynamism. In order to regularize the operation, we 
proposed the use of a simple voting scheme whereby the 
decision of whether to score or approximate a CD-GMM for a 
chunk is based on the sum of number of frames for which the 
CI-GMM scores better than the threshold.  

From this modification we were able to reduce the compute 
workload on the system by over 60% while saving 90% 
memory bandwidth. The latter savings are comparable to 
those achieved by AML modifications, with compute savings 
as an added benefit. Given the promising results of using both 
these techniques, we implemented our algorithms following 
these principles. 
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Fig. 4. An example of CI-based Acoustic Modelling Look-ahead (CI-AML) is 
shown, with chunk size of 4 frames. Left: In phase #1, the CI-GMM scores 
are computed and the summation of frames for which each CI-GMM is active 
within a chunk is computed. Right: The result of applying a threshold of 2 
frames is shown here. For the sake of simplicity, a one-to-one mapping 
between CI- & CD-GMMs is shown. All CD-GMMs corresponding to CI-
GMMs that are active for less than the threshold value are not computed 
(shown by dashed fill) and are backed off to base CI-GMM scores instead. All 
others (rows 1, 3, and 4) are computed just as they would for the regular AML 
case when the GMM is the first active GMM in the chunk. The squares in 
bold are shown for reference sake from the base AML case, which indicates 
the frame when a GMM was computed for that chunk, but CD-GMMs 
corresponding to rows 2 and 5 are not loaded as they are not computed for 
this chunk. 

V. IMPLEMENTATION & RESULTS 
We constructed our system piece-wise, adding additional 

features to every successive implementation. We began with a 
brute-force implementation that focused on the computation 
of the likelihood GMM scores (V-A). Then we incorporated 
the acoustic active list coming from the Phonetic Modeling 
block into the Acoustic Modeling phase so as to compute only 
active GMMs (V-B). We then incorporated our AML 
technique for chunk-based processing (V-C) and finally 
included the CI-GMM layer optimization (V-D). Our final 
implementation is modular and allows us to experiment with 
each of these settings from within one framework, as required.  

We use Sphinx 3, the most widely used open-source ASR 
system, as the reference system for the work presented in this 
paper, and use the Wall Street Journal (WSJ0) speech corpus 
from the Linguistic Data Consortium for our experiments [10, 
11]. The WSJ0 test set is a medium-vocabulary dictation test 
set that contains 5k words extracted from the Wall Street 
Journal news reports with verbalized and non-verbalized 
pronunciations. We use the non-verbalized punctuation (nvp) 

portion of the evaluation set, and selected 80 utterances from 
the speaker-independent test set to get a reasonable coverage 
of the entire test suite. Our language model is based on the N-
gram model, having over 1.5M bigrams and 2.5M tri-grams. 
Our Acoustic Models consist of 110k tri-phones, 49 base-
phones, 4,000 CD-GMMs and 147 CI-GMMs. 

Our implementation was done in OpenCL running on 
Windows 7, using GPUs from NVIDIA. We chose a low-end 
system consisting of a GeForce 9400M GPU (with 2 stream 
multiprocessors) on the NVIDIA ION platform. All data 
structures were extracted from Sphinx and pre-processed 
offline for a GPU-friendly layout. Our main GMM knowledge 
source was converted from a Array-of-Struct layout into a 
Struct-of-Array format, which is the ideal layout for GPU 
processing. We compressed all our knowledge sources (mean, 
variance, pre-computed constant, and mixture weight) into a 
single linear array. This layout helps us in obtaining fully 
coalesced memory read accesses for achieving peak 
bandwidth. 

We use four primary metrics while analyzing our results: 
compute & memory bandwidth overhead or savings (as per 
context), Word Error Rate (WER) and Real-Time Factor 
(RTF), where: 

 

 

 

 

 
Higher WER figures correspond to lower accuracy. RTF of 

1 represents real-time performance, where data is processed 
(speech recognized) at the same rate at which it is generated 
(or spoken). RTF greater than 1 represents faster operation, 
and less than 1, slower than real-time.  

When the acoustic feedback list is used, memory accesses 
become non-contiguous at the GMM-level, but are sequential 
within the GMM (mean/variance pairs for every Mixture in 
every Gaussian). Depending on the application and 
vocabulary size, typical size of the Acoustic Model ranges 
from G = 2k to 6k, M = 2 to 32, and D = 39. From Section II-
B, for the 39-dimension case, every Gaussian requires 80 
values (39-mean/variance pairs, the pre-computed constant 
term, K, and mixture weight, W). So the regularity of memory 
accesses is pseudo-random, requiring several KBytes of data 
per GMM to be loaded from memory, enough for having 
several burst-mode read operations for maximizing memory 
throughput, and the computations are well suited for wide-
SIMD architectures like GPUs. We exploit this regularity in 
our implementation. 

When mapping algorithms to GPU-like massively parallel 
processors, it is important to clearly structure all operations.  
Modern parallel programming models like CUDA and 
OpenCL require the programmer to explicitly split their 
implementation into memory transfer and compute phases, 
with producer-consumer memory objects wrapped around 
execution programs or kernels. The main idea is for data to be 
first initialized and loaded into a memory space accessible by 



the GPU; the compute kernel executes a set of pre-defined 
operations on this data, writes it into GPU-accessible memory, 
followed by transfer of data to the hosts memory space for the 
caller to make use of the data. High processing rates can only 
be achieved when branching within each kernel is minimized, 
as heavy branching in the worst case can lead to serialization 
of operations. We take this into account, and regularize 
operations such that the core compute kernel has no branching 
through the use of parallel prefix sum (scan) followed by a 
compact operation. 

A. Core GMM-compute routine (Brute-force) 
At the core of most modern parallel processors, especially 

GPU-like processors, is a SIMD engine. The number of 
SIMD-lanes, or the granularity of every instruction processed 
every cycle, in NVIDIA GPUs is 32 (which is broken into 2 
half-warps of 16 threads each). To support these compute 
units, on-chip shared memories and caches have an equal 
number of banks. One of the primary design decisions for our 
implementation was therefore to take into account the SIMD 
nature of computations, and the width of these SIMD units. 
Computations are best mapped as multiples of 16, for which 
our data layout packs every mixture into 80 values as 
described previously. 

In the OpenCL programming model, a kernel is broken into 
smaller units referred to as work-groups, each of which 
consists of several work-items, with each work-item 
corresponding to an individual thread. Work-items within a 
work-group can co-operatively execute by sharing data 
through on-chip, local memory, while work-groups 
synchronize using global memory, when data sharing is 
required outside the work-group. GPUs obtain their efficiency 
by having thousands of threads in flight in order to hide long 
memory latencies due to the absence of on-chip caches. Every 
work-group consists of usually 100�’s of threads, and multiple 
work-groups are scheduled concurrently onto a single 
multiprocessor on the GPU, depending on available resources: 
local memory and registers. The multiprocessor is fully 
utilized (occupancy = 1) when enough work-groups can be 
scheduled on the processor so there is no idle time when the 
processor is waiting for data.  

Since register and local memory directly correspond to 
occupancy, which is an important factor in obtaining peak 
compute throughput, we organized our core compute kernel 
accordingly to best fit into the given constraints. To have our 
kernel map well to 16-wide SIMD architectures, we organized 
the core GMM likelihood computation to work in multiples of 
16. Since the number of bytes of storage required by an entire 
mixture is very high (80x4 Bytes), breaking the computation 
into batches of 16 (requiring 5 iterations) is well-suited from 
local memory usage perspective. Both the feature and 
knowledge source (Gaussian information) are loaded in 
multiples of 16. This helped increase our occupancy 
significantly. Since every memory load corresponds to a 
single thread, the number of mixtures assigned to a work-
group can exceed the number of work-items, there-by 
requiring another iteration of memory loads. Finally, once 
data is loaded into local memory, iterations are made over the 

multiply-add operations that need to be performed for all the 
16 values.  

 

 
 
Fig. 5.  Pseudo-code for �‘gmmCompute(act-list)�’ 

B. Feedback lists 
Next, we incorporated the acoustic feedback list. This list is 

an array of flags with true or false values corresponding to 
active GMMs (and hence referred to as the active-list), 
indicating which GMMs get scored for the current frame. In 
order to regularize the compute, we use parallel reduction 
using prefix sum (scan), followed by a compaction operation 
based on the approach of Sengupta et al. [12]. This scan-
compaction stage is important since it eliminates branching in 
core compute kernels and helps boost performance 
significantly. The use of active lists is currently the best 
known implementation of GMM computations on the GPU 
[16]. We therefore use this as our baseline for measuring both 
compute and memory overhead or savings, as the case may be. 
Since the scan is on very small arrays of a few thousand 
elements, the overhead incurred is almost negligible. 

C. Frame-Layer: AML 
AML-based processing is achieved by not operating on the 

�‘in�’ active list directly, but using two additional arrays �– 
buffer and new. The �‘buf�’ array acts as a cushion that keeps 
track of all active GMMs processed in prior frames of the 
current chunk, while the �‘new�’ array corresponds to active 
data in the current frame that was not processed in prior 
frames of the current chunk. Upon generation of the �‘new�’ list 
for a given frame, �‘buf�’ is updated according to the pseudo-
code shown. It can be seen that maintaining both �‘buf�’ and 
�‘new�’ arrays only requires logical operations and therefore 
does not consume any significant compute or memory 
resources. Hence, it is possible to implement dynamic chunk-
based processing, that can lead to savings without incurring 
much overhead. 

After the AML phase, the �‘new�’ vector is compacted and 
GMM likelihood scoring is performed using the 
gmmCompute() routine shown previously, with a slight 

for all Gaussians in the work-group, in parallel 
  for number of iterations in 0 to 4 
    score = 0 //init 
    xSh = load() //features into local memory 
    for all mixtures in 0 to M-1 
      kbSh = load() //part. GMM into local memory 
      for dimensions in 0 to 13 
        score += xSh * kbSh 
      end 
      if iteration == 4 // sentential, branch for 
pre-computed constant and mixture weights 
        score = kbSh – score  //constant term 
        score *= f  //scaling factor 
        score += W  //mixture weight 
      else 
        score += sSh * kbSh 
      end 
    end 
  end 
end 



difference: Instead of processing one frame per invocation of 
the kernel, scores are computed for all frames ranging from 
the current frame to the end frame in the chunk. The only 
overhead at this stage is in terms of re-setting and maintaining 
the bit-vectors for every frame, which is very small when 
compared to loading entire GMMs every frame.  
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Fig. 6. Data-flow steps for AML 
 

 
 
Fig. 7. Pseudo-code for �‘aml(in-list)�’ 

TABLE I 
FRAME-LEVEL, ACOUSTIC MODEL LOOK-AHEAD RESULTS FOR VARYING 

CHUNK SIZES. CHUNK SIZE OF 1 FRAME IS THE BASELINE FOR PERCENTAGES 
OF COMPUTE AND MEMORY CONSUMED 

Chunk WER 
Comp. 

Ovrhead 
(%) 

BW 
Saved 
(%) 

RTF 
9400 M 
(ION) 

1 6.86 0 0 1.50 
2 6.86 3.46 43.76 2.70 
4 6.86 9.76 67.46 3.27 
8 6.86 20.64 79.90 3.96 

 
Since in the worst case only more GMMs are being scored 

when they would otherwise not have been, it is important to 
note that there is no impact on the overall accuracy. 

 
 

D. GMM Layer: CI-GMM 
Our last level of optimization was to incorporate CI-GMM-

based computations to the pipeline. The overall structure 
remains the same as that presented in V-C, but with a couple 
additional stages that deal with the first-pass on CI GMMs. 
After the initial round of scores is computed, the CI-GMM 
Process stage uses the best scores for the number of frames in 
the chunk to obtain a list of frames for which CI-GMMs pass 
the threshold when compared to the best-scoring GMMs. 
These values are summed for all frames, and a simple voting 
mechanism is used to determine whether the CD-GMMs 
corresponding to CI-GMMs need to be processed, or can be 
backed-off with CI-GMM scores. This yields two lists, one 
compute and one backoff list, processed by AML(c) and 
AML(b) blocks respectively.  
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Fig. 8. Data-flow steps for CI-AML optimization  

TABLE II 
RESULTS OF USING THE TWO-PASS, CI- AML 

Chunk 
CI-

GMM 
Thresh 

WER 
Comp. 
Saved 
(%) 

BW 
Saved 
(%) 

RTF 
9400 M 
(ION) 

4 1 7.27 24.04 79.47 4.32 
4 2 7.72 36.81 82.95 4.85 
4 3 8.67 48.81 86.21 5.40 
8 1 7.23 11.78 86.05 4.95 
8 2 7.31 23.57 87.75 5.37 
8 3 7.81 34.05 89.27 6.18 

 
Amongst all the additional stages added between the brute-
force implementation and the CI-GMM optimized 
implementation, the overhead imposed by CI-GMM is the 
largest. It has to do with the fact that a data structure with 
mappings from CI-GMMs to corresponding CD-GMMs 
(represented by �‘cig2g-list�’) is required to activate CD-GMMs 
in either the compute or backoff arrays.  

for frm in 0 to all frames in the utterance 
   
  // AML processing 
  chunkBoundary = frm % CHUNK_SIZE 
  if (chunkBoundary == 0) // at the boundary 
    reset new-list 
    reset buf-list 
  end 
 
  new-list = in-list && !buf-list //populate  
  buf-list = new-list || buf-list //update 
 
  // Scan & Compaction 
  act-list = scan_compact(new-list) 
 
  // GMM Compute over remaining frames in current 
     chunk 
  score = gmmCompute(act-list) 
   
end 



 
 
Fig. 9. Pseudo-code for �‘cigmm_aml()�’ 

VI. DISCUSSION 
From Tables I & II, the larger the chunk size, the greater is 

the speed-up achieved. This is perhaps not a very surprising 
result since as we discussed earlier, likelihood computation of 
GMM scores is a load-intensive operation, dominated by 
100�’s of cycles of memory access latency compared to 10�’s of 
cycles of compute. If speed of processing was the only goal, 
then one would tend to pick larger chunk sizes that require 
fewer accesses to memory. For most practical systems, 
however, speed-up is not the only criterion. Other aspects 
such as compute & memory bandwidth saved, and the effect 
of any optimizations for reducing burden on the system 
resources to accuracy, also need to be considered. 

Our results clearly show that there is no one correct answer 
on what configuration is best. Depending on the constraints, 
and the order of importance of various parameters, the 
solution would vary. We have compiled a set guidelines below: 
• If compute resources were not a limitation, and power 

considerations not of paramount importance, using AML 
would suffice. Savings of 80% memory bandwidth with 
several times faster than real-time processing speed for no 
loss of accuracy can be achieved. Further, if, under 
certain usage scenarios maximum speed-up is not 
required, smaller chunks could be used to minimize strain 
on compute resources.  

• If compute resources are at a premium, then the CI-GMM 
technique would need to be used. The first consideration 
is perhaps tolerance to loss in accuracy. Since scores are 

approximated when using the CI-GMM technique, the 
more the approximation by increasing the CI-GMM state 
threshold, the greater the loss in accuracy. Second, is the 
chunk size: the greater the chunk size, the lesser the 
approximation for smaller values of the CI-GMM state 
threshold. A chunk size of 8 frames gives better accuracy 
compared to chunk size of 4 for corresponding CI-GMM 
state thresholds.  

• Platform-wise, since low-end processors like the NVIDIA 
9400M are always likely to be resource bound, or have 
tighter operating constraints, the CI-GMM optimization 
can be quite helpful. Not only do fewer computations 
need to be performed, but the speed-up obtained can also 
be of importance as it can free system resources for other 
applications to use the device for the remaining time. A 
direct side-effect is loss in accuracy, ranging from 6% to 
26.3% relative to the baseline, though in absolute terms 
for our 5k word dictionary the degradation is marginally 
worse.  

 
As processing on the GPU becomes increasingly 

mainstream, with more applications running on the GPU for 
everyday tasks, a wide range of conditions will be 
encountered by the system. Therefore, rather than fixing any 
of the parameters discussed in this paper, the ideal system 
would dynamically adjust and switch between AML or CI-
AML processing, for varying chunk sizes, and CI-GMM 
thresholds. For example, if the user was dictating a document, 
then a higher error rate might be tolerable when compared to a 
command and control task, where accuracy is critical. The 
system could also autotune these parameters dynamically 
when battery power goes below a certain threshold, or the 
ambient temperature of the device is higher than desired.  

In comparison with other known implementations of GMM 
compute on the GPU, a majority of the approaches proposed 
to date have focused on harnessing the raw compute power of 
these processors by computing �‘all�’ GMMs for every mixture 
for every frame [13-15]. The most optimized implementation 
that we are aware of is by Chong et al. [16], where they use 
the acoustic active list. Since this is the best known 
methodology implemented on the GPU, we chose AML for a 
chunk size of 1 frame, which essentially represents the 
traditional approach, as our baseline for all numbers presented 
in this paper. Just by using the acoustic feedback list, even a 
traditional approach of computing GMM scores for one frame 
per iteration requires 65.74% less compute than a brute-force 
approach. As we intend to run our implementation on low-end 
devices, a brute-force approach is not a feasible option.  

VII. CONCLUSION & FUTURE WORK 
At the GMM layer, we have validated the results presented 

in our theoretical analysis over a larger 5k-word dictionary, 
showing that our proposed modifications can significantly 
help in reducing compute and bandwidth requirements that are 
required for ASR running on low-end GPU processors. 
Looking forward, there are two additional approaches that 

for frm in 0 to all frames in the utterance 
   
  chunkBoundary = frm % CHUNK_SIZE 
  if (chunkBoundary == 0) // at the boundary 
    reset new-lists {b & c} 
    reset buf-lists {b & c} 
 
    for CHUNK frames in parallel      
      // Compute CI-GMM scores 
      score = gmmCompute(all CI-GMMs) 
      maxScore = max(score) 
 
      // CI-GMM process 
      tmpVec = score > (maxScore + CIbeam) 
      finVec = sum of tmpVec over all frames in  
               the chunk for every CI-GMM 
    end 
     
    if finVec > CiGThresh //include CI-GMM to CD- 
                            GMM de-referencing  
      cig2g-c-list = 1 
    else 
      cig2g-b-list = 1 
    end 
  end 
 
  // AML processing 
  aml(cig2g-c-list && in-list) //compute GMMscore 
  aml(cig2g-b-list && in-list) //backoff by  
                                 using corresp.  

   CI-GMM scores 
   
end 



could be incorporated on top of our implementation to yield 
even greater savings in memory and compute requirements. 

Frist, as vocabulary size increases for more complex tasks, 
the number of mixtures per GMM will likely increase by a 
factor of two to four, with a lesser increase in the number of 
GMMs. The third level of modifications we proposed earlier 
[6] would be directly applicable for addressing this. Second, it 
has been shown in prior studies that half-precision floating 
point or custom fixed-point operations, if crafted carefully, 
can be used instead of single-precision floating-point 
operations of GMM likelihood computations. While custom 
fixed-precision requires several software instructions to 
implement every operation, with the support for a half-float 
data type in OpenCL (with hardware-level native support in 
the near future), half-float implementations might provide a 
good opportunity to further reduce memory bandwidth 
requirements by half. 

Nonetheless, our current framework lays a strong 
foundation for further exploration into realizing the goal of 
using low-end GPU processors for performing speech 
recognition. To the best of our knowledge, ours is the only 
work to analyze and present a mechanism of reducing 
compute and memory bandwidth requirements on GPUs for 
speech recognition, with a special focus on low-end 
processors. Looking ahead, as resource-constrained mobile 
platforms become increasingly prevalent, we believe that 
researchers will need to broaden their focus from the single-
minded goal of achieving maximum possible acceleration 
today to optimizing systems that include memory bandwidth 
and power consumption metrics as well. We believe that 
research efforts that combine these additional metrics will be 
more relevant in influencing the future direction of processor 
architecture, software programming models, or algorithm 
selection for use in practical, deployable products. The work 
presented in this paper is a step in that direction. 
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