
Compute & Memory Optimizations for
High-Quality Speech Recognition on

Low-End GPU Processors
Kshitij Gupta and John D. Owens

Department of Electrical & Computer Engineering, University of California, Davis
One Shields Avenue, Davis, California, USA
{kshgupta,jowens}@ucdavis.edu

Abstract�—Gaussian Mixture Model (GMM) computations in

modern Automatic Speech Recognition systems are known to
dominate the total processing time, and are both memory
bandwidth and compute intensive. Graphics processors (GPU),
are well suited for applications exhibiting data- and thread-level
parallelism, as that exhibited by GMM score computations. By
exploiting temporal locality over successive frames of speech, we
have previously presented a theoretical framework for modifying
the traditional speech processing pipeline and obtaining
significant savings in compute and memory bandwidth
requirements, especially on resource-constrained devices like
those found in mobile devices.

In this paper we discuss in detail our implementation for two
of the three techniques we previously proposed, and suggest a set
of guidelines of which technique is suitable for a given condition.
For a medium-vocabulary, dictation task consisting of 5k words,
we are able to reduce memory bandwidth by 80% for a 20%
overhead in compute without loss in accuracy by applying the
first technique, and memory and compute savings of 90% and
35% respectively for a 15% degradation in accuracy by using the
second technique. We are able to achieve a 4x speed-up (to 6
times real-time performance), over the baseline on a low-end
9400M Nvidia GPU.

I. INTRODUCTION
A paradigm shift is under way in the computing world

where both hardware (processor architectures) and software
(programming models) are moving away from sequential to
parallel computing. This shift is being driven by the need for
more compute power required for processing current and
emerging compute workloads. Amongst them, an unlikely
front-runner has emerged in the form of graphics �– used in
games for entertainment, and perhaps more importantly as a
means of providing a rich user experience �– catapulting the
GPU to one of the most essential components in any consumer
electronic system.

The incorporation of unified shaders and programming
languages like CUDA [1] and OpenCL [2] has extended the
potential use of the GPU to non-graphics workloads that
exhibit data- or thread-level parallelism. Over the years,
GPGPU programming has made several strides and there are
very few application domains that have yet to see benefit from
using the GPU [3]. However, moving applications that have
been optimized for one processor family (CPU) onto another
(GPU) is often times a non-trivial task, requiring a re-design

of the application to suit the underlying processor architecture
and programming model.

To this end, a majority of the work in literature has to date
primarily focused on suggesting modifications for the sole
purpose of extracting maximum speedup. The most
constrained part in any product today, however, is the memory
system. Unlike the past where discrete GPUs were more
popular for desktop systems, the recent trend towards
widespread deployment of portable electronics is necessitating
a move towards integrated GPUs, heterogeneous processors,
which are based on a unified memory architecture (CPU and
GPU SoC) like the NVIDIA Tegra [4] and AMD Fusion [5].
As the CPU and GPU reside on the same die and share the
same physical memory, a higher memory access contention is
bound to happen in these systems, which will lead to further
exasperation of the memory bottleneck when data is requested
simultaneously by these two processors. We therefore believe
that in order for the full potential of GPUs to be realized (not
just limited as a co-processor, but an applications processor)
in such platforms, a focus on optimizing memory accesses
must be made for achieving highly efficient systems in the
future.

In this paper we focus on both compute and memory access
patterns of an important form of Natural User Interface (NUI)
that will play a central role in how we interact with
technology �– Automatic Speech Recognition (ASR). High-
quality, continuous speech recognition is compute- and
memory-bandwidth-intensive, requiring 10's of GFLOPs of
compute and 100's of MB/sec of bandwidth, consuming
significant system resources especially for an �‘always on�’
speech-driven interface. While the computations within the
ASR system are a good fit for the data- and thread-level
parallelism provided by the GPU, the unmodified CPU
formulation of the speech pipeline requires far higher memory
accesses, making ASR a good reference application for our
exploration. More specifically, we focus on the core compute-
and memory-bandwidth-intensive portions in the ASR
pipeline related to GMM computations in this paper.

As speech-driven interfaces are best suited in mobile, on-
the-go scenarios, our optimizations are aimed at addressing
some of the key challenges that are a part of small form-factor
devices �– limited compute, memory bandwidth, and stringent
power consumption requirements. Since ultra-mobile
GPGPU-capable processors found in smartphones and tablets

are not yet available for mainstream developer consumption,
we limit our current focus to the lowest-end GPU processor
available, NVIDIA�’s 9400M processor.

The remainder of the paper is organized as follows. We
begin by discussing in greater detail specific architectural
challenges GPUs exhibit, especially in the memory context, in
Section II. In Section III, we provide a brief overview of ASR
followed by our motivation and a detailed description of
modifications for fast GMM compute in Section IV. We
present implementation details of our GMM compute routines
showing significant savings in both compute and memory
bandwidth on a 5k-word dictation task in Section V, followed
by a discussion along with a comparison of this work with
other known GPU implementations in Section VI. We
conclude by pointing to future directions of our work.

II. MEMORY: A CRITICAL RESOURCE
A major distinguishing factor between CPU and GPU

processors is the difference in ratio of area devoted to
compute and memory resources. While the CPU is designed
for handling highly irregular workloads, modern GPUs are
architected as throughput machines that are well suited for
large workloads that present a high degree of data- and thread-
level parallelism. This fundamental difference in the kind of
workload these processors handle leads to a distinct
architectural choice: unlike the traditional CPU which focuses
on latency hiding through a hierarchy of large on-chip caches
and out-of-order execution for extracting parallelism from
sequential workloads, the GPU architecture is comparatively
simple, one that devotes a significant portion of on-chip
silicon to compute resources with small caches and special-
purpose memories.

Although techniques to hide memory latency differs
between the CPU and GPU, it must be noted that due to small
caches on the GPU, lack of support for temporal locality
requires that data be fetched from global memory1. Like other
aspects of GPU programming where a greater onus of
extracting performance is left to the programmer (rather than
the compiler) by providing low-level control to certain
elements in the processor, extraction of temporal locality in
the case of the GPU is also left to the programmer. This is
especially important since access to global DRAM memory is
costly both in terms of performance (often the limiting factor
in achieving peak throughput performance) and power
(contributing a significant percentage of total power drawn in
embedded systems).

As the cost of memory access is high, an ideal system
would have a higher ratio of compute-to-memory access
(FLOPS/Byte). We refer to this ratio as the arithmetic
intensity factor. The degree of arithmetic intensity is
oftentimes beyond the control of the programmer, being
dependent on the algorithm instead, which the programmer
must once again try to work around, if possible.

1 The GeForce 9400M GPU we use in this study does not have a L2 cache and therefore
has no way of exploiting temporal locality, requiring data to be loaded from DRAM for
every frame of data processed; the newer NVIDIA Fermi GPU family, however, does
have an L2, albeit a fraction of the size of modern CPUs.

Lastly, as chip architectures and programming models have
evolved, it is becoming easier to implement larger portions of
an application on the GPU. However, there is still a significant
limitation in realizing entire applications as not all portions of
an application benefit from GPU-like architectures. The CPU
and GPU have traditionally been linked by slow system
interfaces like PCI-Express, whose memory throughput is
significantly lower, and data transfer latencies quite often
larger than the speed-up obtained by offloading a task to the
GPU, thus limiting the usefulness of application deployment
using the GPU.

We see heterogeneity moving from the board-level to the
chip-level as the solution to this problem, with both CPU-
GPU on the same die (like NVIDIA�’s Tegra and AMD�’s
Llano processors), and a dedicated communication link
between the two (like in Intel�’s Sandy Bridge family) as a
natural evolution to platform architectures. This change, while
addressing communication issues between CPU and GPU,
will introduce a different kind of bottleneck �– as the number
of number I/O pins on a chip is unlikely to change due to
economical and practical considerations, these high-
performance heterogeneous processors will lead to a greater
contention between the CPU and GPU for memory accesses.
In effect, the cost of memory transactions is likely to remain
constant while the cost of compute gets increasingly cheaper.
Application performance will therefore not be limited by
compute capabilities, but memory.

Due to these reasons, it is no longer sufficient to design or
modify an application/algorithm without studying and
optimizing for memory bandwidth and access patterns. In the
remainder of this paper, through an example ASR application,
we present systematic modifications to the traditional
algorithm pipeline relating to the log-likelihood score
computations in the Acoustic Modeling phase, and show how
these modifications leads to an efficient system, while
addressing all aspects discussed in this section.

III. EXAMPLE APPLICATION: AUTOMATIC SPEECH
RECOGNITION

Several techniques have been developed over the past few
decades for performing computer-based speech recognition,
often referred to as Automatic Speech Recognition (ASR).
Out of these techniques, Hidden Markov Modeling (HMM)
and Artificial Neural Networks (ANN)-based approaches have
stood-out for continuous, naturally spoken speech by yielding
fairly accurate results. The goal of any ASR system is to
classify incoming voice patterns into a sequence of most
likely spoken words with the help of trained models that are
compiled offline. The problem of obtaining this sequence of
words can be represented by the following equation:

 Eq. 1

where, is the posteriori probability of observing the
observation vector given a word, and is the a priori
probability of observing a word. Word and sequence-of-word
probabilities, are computed offline on large sets of text

corpora that contain all words the system is designed to
recognize. In N-gram systems, these probabilities are
represented as probabilities of word tuples (1, 2, .. N). Since
the word and language knowledge sources are built offline,
most operations in this part of the system rely on memory
look-ups.

The computation of posteriori probability, , is
performed during run-time giving the probability of speech
segments matching one of the acoustic sounds. In a HMM-
based system, like the one used in this research, this posteriori
probability is modeled by HMMs. Every word could
theoretically be represented by its own HMM, but that would
yields poor results for dictionaries with more than tens of
words due to insufficient training data. Further, as speech can
be represented by a sequence of basic sound units, phonemes,
there would be a lot of redundancy in computation.

For this reason, words in most high-end systems are
modeled by their corresponding phonetic sequences, where
every phoneme is represented by a HMM, each modeled by a
3- or 5-state Bakis topology. States within the HMM represent
sub-phonetic (acoustic) sounds that are statistically modeled
by a mixture of Gaussians, often referred to as the Gaussian
Mixture Model (GMM). A collection of GMM�’s is referred to
as the Acoustic Model (AM). It should be noted that the
granularity of distribution within the GMM plays an important
role in determining the robustness, accuracy, and the nature of
speech that the system can decipher (discrete or continuously
spoken words). Gaussian likelihood probability computation
is compute-intensive, and consumes a majority of processing
time.

All knowledge sources in the system are laid out in a
hierarchical manner: language, words, phonemes, and
acoustics. Speech is processed in frames that are produced in
10 msec intervals. The process of generating valid hypotheses
consists of two major phases as shown in Fig. 1(a). The first
phase involves information flow: lists of speech units that can
be hypothesized for the current frame based on information
from prior frames are propagated from higher level knowledge
sources to lower levels sources. The second phase involves all
compute operations related to probability generation, look-up
and pruning with a set of all possible hypothesized words for
the current frame. This process is performed iteratively for
every frame, and at the end of the spoken utterance, the best
scoring path of all possible spoken words is output as the final
sequence of recognized words.

Although each step in Fig. 1(a) is sequential with either
data or information coming from previous stages, there is
enormous parallelism within every stage of both phases due to
limited data dependencies within each stage. Effectively, both
generate and score phases allow for efficient extraction of
thread- and data-parallel operations on modern parallel
processors like the GPU, and hence are well suited for our
application.

Front-end

Search

Feature Extraction

Activate Words

Activate Phonemes

Activate Acoustics

Compute Acoustics

Compute Phonemes

Compute Words

Compute Language

1 frame

Hypothesized sentence

�…

Generate
active lists

Feature Extraction

Activate Words

Activate Phonemes

Activate Acoustics

Compute Acoustics

Compute Phonemes

Compute Words

Compute Language

�…
N frames

Score

(a) Traditional ASR Pipeline (b) Modified ASR Pipeline for GPU-like Processors

Fig. 1. A conceptual diagram representing a typical ASR pipeline is depicted
in (a) while our modified pipeline is shown in (b).

A. GMM Compute Overview
The Acoustic Modeling knowledge source is a collection of

all HMM states for a given target vocabulary, with each state
being represented by a Gaussian Mixture Model (GMM).
Every GMM comprises of a group of multi-variate Gaussians,
i.e. multi-dimensional Gaussians. For the ASR case, the
dimensions can be approximated to be independent from one
another, thereby simplifying the Gaussian co-variance matrix
into a diagonal one. The score for GMM g over M mixtures,
each with a weight of W over D dimensions, is computed by
Eq. 2.

This computation can be simplified by taking the log on both
sides, thus replacing exponent and division operations by
addition and multiplication. Upon pre-computing constant
terms that don�’t rely on speech features generated during run-
time, x, log-likelihood computation, score�’, can be reduced to
Eq. 3.

where,

K =

Eq. 2

Eq. 3

The summation of scores for all mixtures transforms from an
addition to a log-addition (addition in the log domain). As log-
likelihood scores have a small dynamic range, they are multi-
plied by a scaling factor, f, to linearly magnify the dynamic
range. The final simplified equation is shown in Eq. 4.

where, .

In summary, all operations are reduced to multiplication and
summation operations. Further optimizations are possible on
the GPU as these operations can be fused into a single
multiply-add operation, further reducing the arithmetic
intensity. Every memory load therefore corresponds to a
single arithmetic instruction.

IV. OPTIMIZATIONS FOR GMM COMPUTE

A. Motivation
One key challenge for efficient implementation of ASR on

lower-end, low-cost devices is memory accesses �– both
memory size and access patterns. The ASR computing
workload has been found to have low IPC, and high L2 miss
rates that prove detrimental in realizing efficient systems [7,
8]. While modern desktop systems now have enough area
devoted for larger caches (measured in MBytes) that can help
mitigate performance hit due to cache misses, it is unlikely
that this will happen in low-end processors aimed at small
form-factor devices in the near future. Further, workloads on
GPU-like processors are likely to continue to necessitate
larger area to compute resources and lesser to memory. The
only solution for addressing these challenges in the context of
ASR was for us to re-visit the traditional pipeline and explore
modifications that fit well within the parallel processing
paradigm, with little impact to accuracy.

From Fig. 1(a), the flow between stages is inherently
sequential, with the current stage requiring information from
the previous stage. Theoretically, it is possible to de-couple
the sequential nature by ignoring the feedback lists, and
following a brute-force approach �– computing all units of
speech at every stage for every frame of speech input. If this
approach was followed, it would be possible to theoretically
�‘batch-process�’ frames, processing several frames for every
load of data from various knowledge sources. The size of
these knowledge sources, however, is non-trivial (of the order
of 100�’s of MB for large systems), and would incur significant
overhead in terms of both compute and memory bandwidth if
the entire knowledge source was read for every batch of
frames to be processed. On lower-end GPU-like processors
that are constrained for both memory and compute resources,
this is not a feasible solution. Managing active data through
the use of feedback lists is therefore an important part for

realizing practical systems that can be deployed in real-world
scenarios.

In its most simplified form, with pre-computations and re-
arrangement of likelihood scores of multi-variate Gaussians
with a diagonal co-variance, the operations in GMM compute
can be reduced to one arithmetic operation (tens of cycles) per
every memory load (hundreds of cycles of latency) as shown
in Section III. In order to achieve maximum benefit from
GPU-like parallel architectures, the arithmetic intensity of
these operations must be improved to address the disparity
between memory and compute operations �– the more the
number of operations that can be performed per memory load,
the better would be the utilization of underlying hardware
compute resources.

Lastly, as stated earlier, caches play an important role in
helping achieve good performance on CPU-based systems.
The lack of memories that provide temporal locality of data
on-chip in GPU-like processors is perhaps the most important
reason for revisiting the traditional ASR pipeline, since for
every frame of speech, data needs to be loaded from main
memory.

B. Theoretical analysis & suggested modifications
All issues mentioned above can be resolved with one

insight: the nature of temporal locality within successive
frames of speech input. An outline of a theoretical analysis of
this approach [6]. In this section we provide greater details of
how the theoretical analysis could be used, through simple
modifications showing how techniques that have been
successfully employed on the CPU can be successfully
extended with minor modifications on the GPU. While certain
aggressive optimizations can lead to significant reduction in
memory bandwidth requirement by increasing compute
overhead significantly, on lower-end processors, both memory
bandwidth and compute resources are scarce and therefore one
parameter cannot be optimized at the cost of the other. A
balance is essential in realizing an efficient system. Our
modifications were therefore aimed at addressing these issues
without significantly increasing compute overhead from our
baseline, while drastically reducing memory bandwidth
requirements with minimal impact on final recognition
accuracy.

B.1 Modification # 1: Frame-Level
The rate of change in the speech signal over short periods

of time can be slow. Successive frames, which represent 10
msec segments of speech, can sometimes be approximated as
being similar. These similar frames can be assumed to provide
minimal additional information about the voice, and can
therefore be ignored. This is the first-level of approximation
that is often used in a few speech systems to reduce the
computational intensity of operations in the GMM likelihood
computation phase. While this down-sampling does help in
reducing the compute load, it quickly introduces error beyond
skipping every 3rd frame. Amongst the exploration by Chan et
al., this was the least promising technique [9]. Skipping is also
detrimental in noisy conditions as signal variations are much
larger than in clean-speech conditions.

Eq. 4

Since our goal is to use GPUs without significantly
increasing error rate, we would like to minimize
approximations with acceptable degradation in accuracy. We
therefore studied the �‘lifetime�’ of every Gaussian in the model
to understand the locality pattern. To our surprise, while there
is a lot of variation over successive frames as new hypotheses
are formed in the word and language models, good scoring
states continue to remain active for several frames.
Specifically, from our analysis on the Resource Management
1 (RM1) corpus, we found the average lifetime (number of
successive frames for which a GMM is active) was greater
than 10 frames.

From this observation, we concluded that significant
temporal locality existed at the frame level. Given the high
average lifetime, we could assume that once a Gaussian is
activated, it would be safe to assume it is active for a fixed
number of future frames. However, as can be seen in Fig. 2,
many states also have a small lifetime, which means a
significant compute overhead could be incurred when dealing
with Gaussians with smaller lifetimes.

(a) (b)

(c) (d)

Fig. 2. Histogram of lifetime of GMMs active over successive frames over
one utterance consisting of 500 frames of speech over different binning
ranges. From (a) & (b), there are many instances when GMMs remain active
for more than 10 frames. However, from (c) & (d), many GMMs also have
short life-spans and accounting for these GMMs is critical to minimize the
compute overhead.

As it is not possible to predict which GMMs are likely to
live longer, a balanced approach is required that can account
for both small and long lifetimes. Therefore, instead of
assigning a fixed lifetime, we use a dynamic chunk-based
activation scheme, limiting the frames for which a Gaussians
can be active in successive frames to the chunk boundary. At
any frame within a chunk if a Gaussian is activated by the
higher layers, it is deemed active for the rest of the chunk. We

refer to our dynamic, chunk-based look-ahead, as Acoustic
Modeling Look-ahead (AML).

A GMM activated at the boundary of the chunk and active
throughout represents the best-case scenario for both memory
and compute for AML, while a GMM active in the first frame
but inactive for the rest represents the worst-case compute
scenario as additional frames that would otherwise not be
computed would have already been processed. As GMMs are
activated closer to the chunk boundary, a lesser savings in
memory bandwidth is achieved. The AML process is shown
for a few frames in Fig. 3. With this technique we could
theoretically obtain 80% savings in memory bandwidth with
no loss to the accuracy, at the cost of 20% increase in compute
overhead for a chunk size of 8 frames, over the RM1 speech
corpus [6].

3 2

2 4

1

2 2

1 1

Frame
Chunk

Time

G
M

M
 ID

s

Fig. 3. An example of Acoustic Modelling Look-ahead (AML) is shown, with
chunk size of 4 frames. For each frame, an empty block represents an inactive
GMM, a greyed block represents an active GMM, and a shaded block
represents an inactive GMM that is deemed active due to AML. The GMM is
accessed from main memory only during the first frame in which it is active
within a chunk, represented by bold outlined blocks. The colours of these
blocks represent the frame number within the chunk when they are read from
memory.

B.2 Modification # 2: Gaussian-Level
While the incorporation of our AML technique reduces the

memory bandwidth requirement, there is a compute overhead
associated with this optimization. To address this, we looked
at other techniques which are used for reducing compute
workload of GMM computations, amongst which one
technique stood out. It is based on the nature of GMM
computations where-by both the context-independent (CI) and
context-dependent (CD) models are combined to form the
Acoustic Model. CD-GMMs are specific acoustic instances of
their CI-GMMs catering to left and right contexts of phonetic
sound, implying that several CD-GMMs correspond to a
single CI-GMM. Conversely, every CI-GMM is a generic
version of multiple CD-GMMs. This information is used to
construct a two-pass approach wherein the first pass is on the
coarser, CI-GMM data that help narrow down the CD-GMMs
to evaluate in a system based on the score of their CI-GMM
computer-parts. If a CI-GMM scores well relative to others for
a given frame, CD-GMMs corresponding to it could be worth
computing, and if the score is below a certain threshold, CD-
GMMs corresponding to those CI-GMMs could safely be
approximated to CI-GMM scores without severe
repercussions to the accuracy of the system.

In order to extend the AML approach, we analyzed the
lifetime of CI-GMMs. We observed that CI-GMMs have
significantly smaller lifetimes due to a tight pruning threshold.
So the AML approach of a blind look-ahead cannot be used as
is, since a CI-GMM tends to be sporadically active leading to
a lot of dynamism. In order to regularize the operation, we
proposed the use of a simple voting scheme whereby the
decision of whether to score or approximate a CD-GMM for a
chunk is based on the sum of number of frames for which the
CI-GMM scores better than the threshold.

From this modification we were able to reduce the compute
workload on the system by over 60% while saving 90%
memory bandwidth. The latter savings are comparable to
those achieved by AML modifications, with compute savings
as an added benefit. Given the promising results of using both
these techniques, we implemented our algorithms following
these principles.

1

2

2

1

3

C
I-G

M
M

 ID
s Summation

Time
Frame

Chunk
Time

Frame
Chunk

C
D

-G
M

M
 ID

s

Fig. 4. An example of CI-based Acoustic Modelling Look-ahead (CI-AML) is
shown, with chunk size of 4 frames. Left: In phase #1, the CI-GMM scores
are computed and the summation of frames for which each CI-GMM is active
within a chunk is computed. Right: The result of applying a threshold of 2
frames is shown here. For the sake of simplicity, a one-to-one mapping
between CI- & CD-GMMs is shown. All CD-GMMs corresponding to CI-
GMMs that are active for less than the threshold value are not computed
(shown by dashed fill) and are backed off to base CI-GMM scores instead. All
others (rows 1, 3, and 4) are computed just as they would for the regular AML
case when the GMM is the first active GMM in the chunk. The squares in
bold are shown for reference sake from the base AML case, which indicates
the frame when a GMM was computed for that chunk, but CD-GMMs
corresponding to rows 2 and 5 are not loaded as they are not computed for
this chunk.

V. IMPLEMENTATION & RESULTS
We constructed our system piece-wise, adding additional

features to every successive implementation. We began with a
brute-force implementation that focused on the computation
of the likelihood GMM scores (V-A). Then we incorporated
the acoustic active list coming from the Phonetic Modeling
block into the Acoustic Modeling phase so as to compute only
active GMMs (V-B). We then incorporated our AML
technique for chunk-based processing (V-C) and finally
included the CI-GMM layer optimization (V-D). Our final
implementation is modular and allows us to experiment with
each of these settings from within one framework, as required.

We use Sphinx 3, the most widely used open-source ASR
system, as the reference system for the work presented in this
paper, and use the Wall Street Journal (WSJ0) speech corpus
from the Linguistic Data Consortium for our experiments [10,
11]. The WSJ0 test set is a medium-vocabulary dictation test
set that contains 5k words extracted from the Wall Street
Journal news reports with verbalized and non-verbalized
pronunciations. We use the non-verbalized punctuation (nvp)

portion of the evaluation set, and selected 80 utterances from
the speaker-independent test set to get a reasonable coverage
of the entire test suite. Our language model is based on the N-
gram model, having over 1.5M bigrams and 2.5M tri-grams.
Our Acoustic Models consist of 110k tri-phones, 49 base-
phones, 4,000 CD-GMMs and 147 CI-GMMs.

Our implementation was done in OpenCL running on
Windows 7, using GPUs from NVIDIA. We chose a low-end
system consisting of a GeForce 9400M GPU (with 2 stream
multiprocessors) on the NVIDIA ION platform. All data
structures were extracted from Sphinx and pre-processed
offline for a GPU-friendly layout. Our main GMM knowledge
source was converted from a Array-of-Struct layout into a
Struct-of-Array format, which is the ideal layout for GPU
processing. We compressed all our knowledge sources (mean,
variance, pre-computed constant, and mixture weight) into a
single linear array. This layout helps us in obtaining fully
coalesced memory read accesses for achieving peak
bandwidth.

We use four primary metrics while analyzing our results:
compute & memory bandwidth overhead or savings (as per
context), Word Error Rate (WER) and Real-Time Factor
(RTF), where:

Higher WER figures correspond to lower accuracy. RTF of

1 represents real-time performance, where data is processed
(speech recognized) at the same rate at which it is generated
(or spoken). RTF greater than 1 represents faster operation,
and less than 1, slower than real-time.

When the acoustic feedback list is used, memory accesses
become non-contiguous at the GMM-level, but are sequential
within the GMM (mean/variance pairs for every Mixture in
every Gaussian). Depending on the application and
vocabulary size, typical size of the Acoustic Model ranges
from G = 2k to 6k, M = 2 to 32, and D = 39. From Section II-
B, for the 39-dimension case, every Gaussian requires 80
values (39-mean/variance pairs, the pre-computed constant
term, K, and mixture weight, W). So the regularity of memory
accesses is pseudo-random, requiring several KBytes of data
per GMM to be loaded from memory, enough for having
several burst-mode read operations for maximizing memory
throughput, and the computations are well suited for wide-
SIMD architectures like GPUs. We exploit this regularity in
our implementation.

When mapping algorithms to GPU-like massively parallel
processors, it is important to clearly structure all operations.
Modern parallel programming models like CUDA and
OpenCL require the programmer to explicitly split their
implementation into memory transfer and compute phases,
with producer-consumer memory objects wrapped around
execution programs or kernels. The main idea is for data to be
first initialized and loaded into a memory space accessible by

the GPU; the compute kernel executes a set of pre-defined
operations on this data, writes it into GPU-accessible memory,
followed by transfer of data to the hosts memory space for the
caller to make use of the data. High processing rates can only
be achieved when branching within each kernel is minimized,
as heavy branching in the worst case can lead to serialization
of operations. We take this into account, and regularize
operations such that the core compute kernel has no branching
through the use of parallel prefix sum (scan) followed by a
compact operation.

A. Core GMM-compute routine (Brute-force)
At the core of most modern parallel processors, especially

GPU-like processors, is a SIMD engine. The number of
SIMD-lanes, or the granularity of every instruction processed
every cycle, in NVIDIA GPUs is 32 (which is broken into 2
half-warps of 16 threads each). To support these compute
units, on-chip shared memories and caches have an equal
number of banks. One of the primary design decisions for our
implementation was therefore to take into account the SIMD
nature of computations, and the width of these SIMD units.
Computations are best mapped as multiples of 16, for which
our data layout packs every mixture into 80 values as
described previously.

In the OpenCL programming model, a kernel is broken into
smaller units referred to as work-groups, each of which
consists of several work-items, with each work-item
corresponding to an individual thread. Work-items within a
work-group can co-operatively execute by sharing data
through on-chip, local memory, while work-groups
synchronize using global memory, when data sharing is
required outside the work-group. GPUs obtain their efficiency
by having thousands of threads in flight in order to hide long
memory latencies due to the absence of on-chip caches. Every
work-group consists of usually 100�’s of threads, and multiple
work-groups are scheduled concurrently onto a single
multiprocessor on the GPU, depending on available resources:
local memory and registers. The multiprocessor is fully
utilized (occupancy = 1) when enough work-groups can be
scheduled on the processor so there is no idle time when the
processor is waiting for data.

Since register and local memory directly correspond to
occupancy, which is an important factor in obtaining peak
compute throughput, we organized our core compute kernel
accordingly to best fit into the given constraints. To have our
kernel map well to 16-wide SIMD architectures, we organized
the core GMM likelihood computation to work in multiples of
16. Since the number of bytes of storage required by an entire
mixture is very high (80x4 Bytes), breaking the computation
into batches of 16 (requiring 5 iterations) is well-suited from
local memory usage perspective. Both the feature and
knowledge source (Gaussian information) are loaded in
multiples of 16. This helped increase our occupancy
significantly. Since every memory load corresponds to a
single thread, the number of mixtures assigned to a work-
group can exceed the number of work-items, there-by
requiring another iteration of memory loads. Finally, once
data is loaded into local memory, iterations are made over the

multiply-add operations that need to be performed for all the
16 values.

Fig. 5. Pseudo-code for �‘gmmCompute(act-list)�’

B. Feedback lists
Next, we incorporated the acoustic feedback list. This list is

an array of flags with true or false values corresponding to
active GMMs (and hence referred to as the active-list),
indicating which GMMs get scored for the current frame. In
order to regularize the compute, we use parallel reduction
using prefix sum (scan), followed by a compaction operation
based on the approach of Sengupta et al. [12]. This scan-
compaction stage is important since it eliminates branching in
core compute kernels and helps boost performance
significantly. The use of active lists is currently the best
known implementation of GMM computations on the GPU
[16]. We therefore use this as our baseline for measuring both
compute and memory overhead or savings, as the case may be.
Since the scan is on very small arrays of a few thousand
elements, the overhead incurred is almost negligible.

C. Frame-Layer: AML
AML-based processing is achieved by not operating on the

�‘in�’ active list directly, but using two additional arrays �–
buffer and new. The �‘buf�’ array acts as a cushion that keeps
track of all active GMMs processed in prior frames of the
current chunk, while the �‘new�’ array corresponds to active
data in the current frame that was not processed in prior
frames of the current chunk. Upon generation of the �‘new�’ list
for a given frame, �‘buf�’ is updated according to the pseudo-
code shown. It can be seen that maintaining both �‘buf�’ and
�‘new�’ arrays only requires logical operations and therefore
does not consume any significant compute or memory
resources. Hence, it is possible to implement dynamic chunk-
based processing, that can lead to savings without incurring
much overhead.

After the AML phase, the �‘new�’ vector is compacted and
GMM likelihood scoring is performed using the
gmmCompute() routine shown previously, with a slight

for all Gaussians in the work-group, in parallel
 for number of iterations in 0 to 4
 score = 0 //init
 xSh = load() //features into local memory
 for all mixtures in 0 to M-1
 kbSh = load() //part. GMM into local memory
 for dimensions in 0 to 13
 score += xSh * kbSh
 end
 if iteration == 4 // sentential, branch for
pre-computed constant and mixture weights
 score = kbSh – score //constant term
 score *= f //scaling factor
 score += W //mixture weight
 else
 score += sSh * kbSh
 end
 end
 end
end

difference: Instead of processing one frame per invocation of
the kernel, scores are computed for all frames ranging from
the current frame to the end frame in the chunk. The only
overhead at this stage is in terms of re-setting and maintaining
the bit-vectors for every frame, which is very small when
compared to loading entire GMMs every frame.

Activate Acoustics

Compute Phonemes

in

AML

Compact

buf

GMM Compute

new

Fig. 6. Data-flow steps for AML

Fig. 7. Pseudo-code for �‘aml(in-list)�’

TABLE I
FRAME-LEVEL, ACOUSTIC MODEL LOOK-AHEAD RESULTS FOR VARYING

CHUNK SIZES. CHUNK SIZE OF 1 FRAME IS THE BASELINE FOR PERCENTAGES
OF COMPUTE AND MEMORY CONSUMED

Chunk WER
Comp.

Ovrhead
(%)

BW
Saved
(%)

RTF
9400 M
(ION)

1 6.86 0 0 1.50
2 6.86 3.46 43.76 2.70
4 6.86 9.76 67.46 3.27
8 6.86 20.64 79.90 3.96

Since in the worst case only more GMMs are being scored

when they would otherwise not have been, it is important to
note that there is no impact on the overall accuracy.

D. GMM Layer: CI-GMM
Our last level of optimization was to incorporate CI-GMM-

based computations to the pipeline. The overall structure
remains the same as that presented in V-C, but with a couple
additional stages that deal with the first-pass on CI GMMs.
After the initial round of scores is computed, the CI-GMM
Process stage uses the best scores for the number of frames in
the chunk to obtain a list of frames for which CI-GMMs pass
the threshold when compared to the best-scoring GMMs.
These values are summed for all frames, and a simple voting
mechanism is used to determine whether the CD-GMMs
corresponding to CI-GMMs need to be processed, or can be
backed-off with CI-GMM scores. This yields two lists, one
compute and one backoff list, processed by AML(c) and
AML(b) blocks respectively.

Activate Acoustics

Compute Phonemes

in

AML(b)

Compact

GMM Compute (CI)

AML(c)

Compact

buf

CI-GMM Process

GMM Comp. Back-off

new

buf

CI-phase only at
chunk boundary

Computed every
frame

Fig. 8. Data-flow steps for CI-AML optimization

TABLE II
RESULTS OF USING THE TWO-PASS, CI- AML

Chunk
CI-

GMM
Thresh

WER
Comp.
Saved
(%)

BW
Saved
(%)

RTF
9400 M
(ION)

4 1 7.27 24.04 79.47 4.32
4 2 7.72 36.81 82.95 4.85
4 3 8.67 48.81 86.21 5.40
8 1 7.23 11.78 86.05 4.95
8 2 7.31 23.57 87.75 5.37
8 3 7.81 34.05 89.27 6.18

Amongst all the additional stages added between the brute-
force implementation and the CI-GMM optimized
implementation, the overhead imposed by CI-GMM is the
largest. It has to do with the fact that a data structure with
mappings from CI-GMMs to corresponding CD-GMMs
(represented by �‘cig2g-list�’) is required to activate CD-GMMs
in either the compute or backoff arrays.

for frm in 0 to all frames in the utterance

 // AML processing
 chunkBoundary = frm % CHUNK_SIZE
 if (chunkBoundary == 0) // at the boundary
 reset new-list
 reset buf-list
 end

 new-list = in-list && !buf-list //populate
 buf-list = new-list || buf-list //update

 // Scan & Compaction
 act-list = scan_compact(new-list)

 // GMM Compute over remaining frames in current
 chunk
 score = gmmCompute(act-list)

end

Fig. 9. Pseudo-code for �‘cigmm_aml()�’

VI. DISCUSSION
From Tables I & II, the larger the chunk size, the greater is

the speed-up achieved. This is perhaps not a very surprising
result since as we discussed earlier, likelihood computation of
GMM scores is a load-intensive operation, dominated by
100�’s of cycles of memory access latency compared to 10�’s of
cycles of compute. If speed of processing was the only goal,
then one would tend to pick larger chunk sizes that require
fewer accesses to memory. For most practical systems,
however, speed-up is not the only criterion. Other aspects
such as compute & memory bandwidth saved, and the effect
of any optimizations for reducing burden on the system
resources to accuracy, also need to be considered.

Our results clearly show that there is no one correct answer
on what configuration is best. Depending on the constraints,
and the order of importance of various parameters, the
solution would vary. We have compiled a set guidelines below:
• If compute resources were not a limitation, and power

considerations not of paramount importance, using AML
would suffice. Savings of 80% memory bandwidth with
several times faster than real-time processing speed for no
loss of accuracy can be achieved. Further, if, under
certain usage scenarios maximum speed-up is not
required, smaller chunks could be used to minimize strain
on compute resources.

• If compute resources are at a premium, then the CI-GMM
technique would need to be used. The first consideration
is perhaps tolerance to loss in accuracy. Since scores are

approximated when using the CI-GMM technique, the
more the approximation by increasing the CI-GMM state
threshold, the greater the loss in accuracy. Second, is the
chunk size: the greater the chunk size, the lesser the
approximation for smaller values of the CI-GMM state
threshold. A chunk size of 8 frames gives better accuracy
compared to chunk size of 4 for corresponding CI-GMM
state thresholds.

• Platform-wise, since low-end processors like the NVIDIA
9400M are always likely to be resource bound, or have
tighter operating constraints, the CI-GMM optimization
can be quite helpful. Not only do fewer computations
need to be performed, but the speed-up obtained can also
be of importance as it can free system resources for other
applications to use the device for the remaining time. A
direct side-effect is loss in accuracy, ranging from 6% to
26.3% relative to the baseline, though in absolute terms
for our 5k word dictionary the degradation is marginally
worse.

As processing on the GPU becomes increasingly

mainstream, with more applications running on the GPU for
everyday tasks, a wide range of conditions will be
encountered by the system. Therefore, rather than fixing any
of the parameters discussed in this paper, the ideal system
would dynamically adjust and switch between AML or CI-
AML processing, for varying chunk sizes, and CI-GMM
thresholds. For example, if the user was dictating a document,
then a higher error rate might be tolerable when compared to a
command and control task, where accuracy is critical. The
system could also autotune these parameters dynamically
when battery power goes below a certain threshold, or the
ambient temperature of the device is higher than desired.

In comparison with other known implementations of GMM
compute on the GPU, a majority of the approaches proposed
to date have focused on harnessing the raw compute power of
these processors by computing �‘all�’ GMMs for every mixture
for every frame [13-15]. The most optimized implementation
that we are aware of is by Chong et al. [16], where they use
the acoustic active list. Since this is the best known
methodology implemented on the GPU, we chose AML for a
chunk size of 1 frame, which essentially represents the
traditional approach, as our baseline for all numbers presented
in this paper. Just by using the acoustic feedback list, even a
traditional approach of computing GMM scores for one frame
per iteration requires 65.74% less compute than a brute-force
approach. As we intend to run our implementation on low-end
devices, a brute-force approach is not a feasible option.

VII. CONCLUSION & FUTURE WORK
At the GMM layer, we have validated the results presented

in our theoretical analysis over a larger 5k-word dictionary,
showing that our proposed modifications can significantly
help in reducing compute and bandwidth requirements that are
required for ASR running on low-end GPU processors.
Looking forward, there are two additional approaches that

for frm in 0 to all frames in the utterance

 chunkBoundary = frm % CHUNK_SIZE
 if (chunkBoundary == 0) // at the boundary
 reset new-lists {b & c}
 reset buf-lists {b & c}

 for CHUNK frames in parallel
 // Compute CI-GMM scores
 score = gmmCompute(all CI-GMMs)
 maxScore = max(score)

 // CI-GMM process
 tmpVec = score > (maxScore + CIbeam)
 finVec = sum of tmpVec over all frames in
 the chunk for every CI-GMM
 end

 if finVec > CiGThresh //include CI-GMM to CD-
 GMM de-referencing
 cig2g-c-list = 1
 else
 cig2g-b-list = 1
 end
 end

 // AML processing
 aml(cig2g-c-list && in-list) //compute GMMscore
 aml(cig2g-b-list && in-list) //backoff by
 using corresp.

 CI-GMM scores

end

could be incorporated on top of our implementation to yield
even greater savings in memory and compute requirements.

Frist, as vocabulary size increases for more complex tasks,
the number of mixtures per GMM will likely increase by a
factor of two to four, with a lesser increase in the number of
GMMs. The third level of modifications we proposed earlier
[6] would be directly applicable for addressing this. Second, it
has been shown in prior studies that half-precision floating
point or custom fixed-point operations, if crafted carefully,
can be used instead of single-precision floating-point
operations of GMM likelihood computations. While custom
fixed-precision requires several software instructions to
implement every operation, with the support for a half-float
data type in OpenCL (with hardware-level native support in
the near future), half-float implementations might provide a
good opportunity to further reduce memory bandwidth
requirements by half.

Nonetheless, our current framework lays a strong
foundation for further exploration into realizing the goal of
using low-end GPU processors for performing speech
recognition. To the best of our knowledge, ours is the only
work to analyze and present a mechanism of reducing
compute and memory bandwidth requirements on GPUs for
speech recognition, with a special focus on low-end
processors. Looking ahead, as resource-constrained mobile
platforms become increasingly prevalent, we believe that
researchers will need to broaden their focus from the single-
minded goal of achieving maximum possible acceleration
today to optimizing systems that include memory bandwidth
and power consumption metrics as well. We believe that
research efforts that combine these additional metrics will be
more relevant in influencing the future direction of processor
architecture, software programming models, or algorithm
selection for use in practical, deployable products. The work
presented in this paper is a step in that direction.

ACKNOWLEDGEMENTS
We thank an Intel Microprocessor Technology Lab grant

for funding this project, and the BMW Technology Office for
lending us the NVIDIA ION platform.

REFERENCES
[1] NVIDIA CUDA Compute Unified Device Architecture: Programming

Guide (Version 4.0), Nvidia Corporation, 2011.
[2] A. Munshi, The OpenCL Specification (Version 1.1, Revision 44),

Khronos Group, 2010.
[3] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.

Lefohn, and T. J. Purcell, "A Survey of General-Purpose Computation
on Graphics Hardware," in Computer Graphics Forum, vol. 26, pp. 80-
113, 2007.

[4] (2011) NVIDIA Tegra website. [Online]. Available:
http://www.nvidia.com/page/handheld.html

[5] (2011) AMD Fusion details from Wikipedia. [Online]. Available:
http://en.wikipedia.org/wiki/AMD_Fusion

[6] K. Gupta, and J. D. Owens, "Three-Layer Optimizations for Fast GMM
Computations on GPU-like Parallel Processors," in Proc. of Automatic
Speech Recognition & Understanding Workshop, pp. 146-151, Dec.
2009.

[7] K. Agaram, S. Keckler, D. Burger, �“A Characterization of Speech
Recognition on Modern Computer System,�” in Proc. of the 4th IEEE
Workshop on Workload Characterization, pp. 45-53, Dec. 2001.

[8] R. Krishna, S. Mahlke, and T. Austin, "Insights Into the Memory
Demands of Speech Recognition Algorithms," in Proc. of the 2nd
Annual Workshop on Memory Performance Issues, May 2002.

[9] A. Chan, R. Mosur, A. Rudnicky, and J. Sherwani, �“Four-layer
Categorization Scheme of Fast GMM Computation Techniques in
Large Vocabulary Continuous Speech Recognition Systems,�” in Proc.
of Interspeech, pp. 689-692, Oct. 2004.

[10] (2011) Sphinx Homepage. [Online]. Available:
http://cmusphinx.sourceforge.net/html/cmusphinx.php

[11] J. Garofalo, D. Graff, D. Paul, and D. Pallett, �“CSR-I (WSJ0) Speech
Corpora,�” Linguistic Data Consortium, LDC93S6A,

[12] S. Sengupta, M. Harris, Y. Zhang, J. D. Owens, �“Scan Primitives for
GPU computing,�” Graphics Hardware 2007, pp. 97-106, August 2007.

[13] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau, "GPU
Accelerated Acoustics Likelihood Computations," pp. 350-353, in Proc.
of Interspeech, Sept. 2008.

[14] P. R. Dixon, T. Oonishi, and S. Furui, "Harnessing Graphics
Processors for the Fast Computation of Acoustic Likelihoods in Speech
Recognition," Computer Speech & Language, vol. 23, pp. 510-526,
Oct. 2009.

[15] P. R. Dixon, T. Oonishi, and S. Furui, �“Fast Acoustic Computations
Using Graphics Processors,�” in Proc. IEEE Intl. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 4321-4324, Taipei,
Taiwan, 2009.

[16] J. Chong, Y. Yi, A. Faria, N. Satish, and K. Keutzer, "Data-Parallel
Large Vocabulary Continuous Speech Recognition on Graphics
Processors," in Proc. of Emerging Applications and Manycore
Architecture, pp. 23-35, Jun. 2008.

