Login

Cubic Gradient-Based Material Interfaces

@article{Prilepov:2013:CGM,
title="Cubic Gradient-Based Material Interfaces",
journal="IEEE Transactions on Visualization and Computer Graphics",
author="Iuri Prilepov AND Harald Obermaier AND Eduard Deines AND Christoph Garth AND Kenneth I. Joy ",
year="2013",
keywords="visualization, boundary representation, computational geometry, object modeling, varying isosurface, contouring, coons patch, reconstruction, volume fraction, material interface",
url="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6461882",
abstract="Multi-fluid simulations often create volume fraction data, representing fluid volumes per region or cell of a fluid data set. Accurate and visually realistic extraction of fluid boundaries is a challenging and essential task for efficient analysis of multi-fluid data. In this work we present a new material interface reconstruction method for such volume fraction data. Within each cell of the data set, our method utilizes a gradient field approximation based on trilinearly blended Coons-patches to generate a volume-fraction function, representing the change in volume fractions over the cells. A continuously varying isovalue field is applied to this function to produce a smooth interface that preserves the given volume fractions well. Further, the method allows user-controlled balance between volume accuracy and physical plausibility of the interface. The method works on two- and three-dimensional Cartesian grids, and handles multiple materials. Calculations are performed locally and utilize only the one-ring of cells surrounding a given cell, allowing visualizations of the material interfaces to be easily generated on a GPU or in a large-scale distributed parallel environment. Our results demonstrate the robustness, accuracy and flexibility of the developed algorithms.",
}
back to publication