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Abstract Earth’s atmosphere and oceans are largely determined by periodic
patterns of solar radiation, from daily and seasonal, to orbital variations over
thousands of years. Dynamical processes alter these cycles with feedbacks and
delays, so that the observed climate response is a combination of cyclical fea-
tures and sudden regime changes. A primary example is the shift from a glacial
(ice age) state to interglacial, which is driven by a 100-thousand year orbital
cycle, while the transition occurs over a period of hundreds of years. Tradi-
tional methods of statistical analysis such as Fourier and wavelet transforms
are very good at describing cyclical behavior but lack any characterization
of singular events and regime changes. More recently, researchers have tested
techniques in the statistical discipline of change point detection. This paper
explores the unique advantages of a piecewise linear regression change point de-
tection algorithm to identify events, regime shifts, and the direction of cyclical
trends in geophysical data. It evaluates the reasons for choosing this particular
change detection algorithm over other techniques by applying the technique to
both observational and model data sets. A comparison of the proposed change
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detection algorithm to the more established statistical techniques shows the
benefits and drawbacks of each method.

Keywords change point detection · ocean data · Fourier transform · wavelets

1 Introduction

Data sets in geophysical dynamics span from minutes to millennia and meters
to continents. Scientists rely on analysis tools to view dynamical processes in
meaningful and insightful ways. Each tool represents time and spatial scales
in a particular way, and highlights certain aspects of the data while obscur-
ing others. A striking example is the application of the Fourier transform to
paleo-climate data, where the Milankovitch orbital cycles of 100 and 41 thou-
sand years form obvious spectral peaks (Milankovitch, 1941), yet the Fourier
spectrum provides no information about the exact timing, spacing, or speed
of glacial to interglacial transitions. Modern climate change research has em-
phasized the importance of characterizing the sources of natural variability in
order to understand anthropogenic influence on earth systems. These geophys-
ical processes include El Niño oscillation (Oceanic Nino Index, 2018), oceanic
circulation, the Atlantic meridional overturning circulation (McManus et al.,
2004), ice-albedo feedback (Imbrie et al., 1993), and a host of others. Tra-
ditional statistical methods for large time-series data from observations and
models include the Fourier and continuous wavelet transforms (Talley, 2011;
Wunsch, 2015). The Fourier transform, or spectral analysis, of a data set allows
a user to quickly identify major oscillatory components by extracting the most
prominent peaks in the spectrum (von Storch and Zwiers, 2002). In contrast,
wavelet analysis does not average the amplitude and phase for each frequency
component over time; it provides a localized estimate for each spectral com-
ponent at a particular point in time (Thomson and Emery, 2014). When the
frequency of a data stream changes abruptly in the middle of the sequence,
this positional change would be captured by wavelet analysis and would be
missed by Fourier analysis.

More recently, ocean scientists have incorporated change point detection
algorithms for data analysis. Change point detection, or simply change de-
tection, is a widely used statistical approach for targeted data reduction. It
includes regression-based methods, Bayesian methods, and multi-variate meth-
ods, among others (Basseville et al., 1993). Time series decomposition (Hynd-
man and Athanasopoulos, 2018) is one of the more popular change detection
techniques for climate and ocean data, as it decomposes a signal into trend,
seasonal/cyclical and noise components. For example, Verbesselt et al. (2010)
examined satellite images showing land cover of vegetation over time to iden-
tify three types of events that might determine change: seasonal e↵ects, grad-
ual climate variability and abrupt change resulting from deforestation, fires
or floods. Quan et al. (2016) applied time series decomposition to recorded
land surface temperature data over Beijing and performed a comparison to
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simulated data using root mean squared (RMS) error to understand di↵er-
ences in observations and model predictions. Goela et al. (2016) temporally
decomposed sea surface temperature data from various points o↵ the coast
of Portugal. They subtracted the seasonal component from the original data
stream and applied a linear regression fit to the remainder to extract promi-
nent change points.

These e↵orts have thoroughly explored applications of time series decom-
position to ocean and climate data, but time series decomposition in and of
itself fails to provide significant information to the scientist beyond what a
Fourier analysis would. In most cases, the seasonal component of the time
series decomposition is computed by identifying the major frequencies in the
data, using a Fourier transform to identify these frequencies. Additionally, if
all the major seasonal and cyclical components are not properly extracted,
they will be reflected in the noise component, possibly corrupting this graph
into misidentifying the more sporadic events in data history.

This paper introduces the use of a di↵erent technique for cyclical ocean
and climate data analysis: piecewise linear regression change point detection.
This algorithm identifies major regime shifts in cyclical climate data, providing
the scientist with specific points in time where major geophysical events have
occurred in history. This is a unique type of feedback that cannot be provided
to the scientist with Fourier and wavelet analysis.

Piecewise linear fitting for climate applications has been previously ex-
plored in Tomé and Miranda (2004). However, there are many di↵erences
between the implementation of the technique presented in this paper and the
technique presented in the related work. Firstly, the related work identifies
break points by minimizing the residual sum of squares (RSS). The technique
presented in the following section uses the RSS to define the F-statistic,
but the primary goal of the algorithm presented is not to minimize this value
but to use it to identify local behavior. Additionally, the algorithm proposed
by Tomé and Miranda (2004) has several restrictions including: (1) defining
a minimum distance between break points, (2) requiring that consecutive line
segments reverse from increasing to decreasing or vice versa (3) and limiting
the maximum number of break points to 12. None of these are limitations of
the algorithm proposed in this paper. The algorithm presented does not en-
force a minimum distance between break points, allowing breaks to be defined
by both sudden and gradual changes. It also allows multiple consecutive trends
to be both increasing or decreasing, allowing for break points to occur when
the data, for example, changes from a gradual decrease to a more dramatic,
immediate drop. Finally, the algorithm sets no limitations on the number of
break points, rather allowing the data and algorithmic parameters to dictate
the number needed to describe the variation.

The value of the change detection algorithm presented in this paper is
explored through five data sets: (1) carbon dioxide records from Antarctic
ice cores (Bereiter et al., 2015); (2) sedimentary oxygen-18 isotope records,
a proxy of temperature, from the Benthic zone (Lisiecki and Raymo, 2005);
(3) the Oceanic Niño Index at the Niño 3.4 region; (4) the North Atlantic
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Oscillation (NAO) Index between a station in the Azores and one in Iceland
(Hurrell, 1995; Jones et al., 1997); and (5) ocean eddies in the Agulhas regions
south of Africa (MPAS-Developers, 2013; Ringler et al., 2013; Petersen et al.,
2015). The paper also provides a comparison of the piecewise linear regression
technique (Myers et al., 2016), to Fourier- and wavelet-based analysis to de-
rive advantages and disadvantages of these methods. The case study for the
North Atlantic Oscillation Index data also discusses the results obtained by
the presented algorithm to the results shown by Tomé and Miranda (2004) to
highlight the di↵erences of the two techniques.

2 Change Detection

A change point, in broad statistical terms, refers to a place or time such
that the observed data follows one distribution up to that point and another
distribution after that point (Chen and Gupta, 2011). Change point detection
algorithms generally serve two main purposes: (1) to decide whether there is
change in the data and (2) to determine the locations where this change is
present. For geophysical data, the goal in using change point detection is to
extract time steps of scientific significance.

As Reeves et al. (2007) discussed in their survey paper on the applica-
tion of various change point algorithms for climate data, the type of technique
to use depends on the data to be analyzed. The Bayesian change point de-
tection discussed in Ray and Tsay (2002), for example, determines change
points by subdividing the data into regions with a constant mean. Other tech-
niques (CRAN, 2017) determine change by penalizing the variance of the data.
However, these techniques are not as relevant for cyclical data because ocean
scientists are generally more interested in examining properties of change in
the data rather than identifying uniformity. Piecewise linear regression mod-
els, such as the one presented in this section, are more appropriate, as they
look for first order changes, i.e. points at which the rate of change di↵ers from
one region to another.

2.1 Piecewise Linear Regression Change Detection

For the data discussed in this paper, a technique that captures the changes
from the increasing trend to the decreasing trend, and vice versa, is vital.
These regime shifts often signify noteworthy events in history. Therefore, a
piecewise linear regression model based on the work presented by Myers et al.
(2016) is more appropriate. Although originally designed to analyze pixel val-
ues in an image, this approach has been adapted to detect changes in other
types of data. There is a variety of change point methods based on piece-
wise representations, including the trend filtering approach proposed by Tib-
shirani (Tibshirani et al., 2014) that uses the Lasso technique (Hyun et al.,
2016).
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A linear regression model estimates the least squares line fit to a set of
data points. The goal is to estimate the best linear relationship between the
dependent variable on the x-axis, and the independent variable on the y-axis.
However, if the relationship between the two variables is non-linear, then the
linear regression model will be a poor representation of the data. This can
be addressed using a piecewise linear regression model, where line segments
are fit to subsets of the data. A line segment is used to represent the data as
long as the error between the data and the fitted line segment is acceptably
small. When the addition of a new data point increases the error beyond the
acceptable threshold, this point is set to be the “change point”, where a new
line segment begins as illustrated in Figure 2.1.

X	 X	

Fig. 1: Illustration of piecewise linear regression. The image on the left shows
a blue line segment fit to the first three data points. The fourth point would
introduce too much error to the linear regression model to be a good fit to
the blue line. Therefore, a new line fit starts, as shown in green on the right,
encompassing the third and fourth points. The fourth point is considered the
change point.

The piecewise linear regression model determines change points in the fol-
lowing way: The user first defines a bu↵er size, B, indicative of the number of
data points the algorithm will consider to find a change point. For example, in
a time-dependent data set, B would correspond to the number of time steps
to examine. This approach ensures that even with very large data sets, calcu-
lations can still be performed e�ciently by focusing on smaller regions when
desired. Given a bu↵er size, B, the algorithm considers the first B time steps
in the simulation, denoted as curr, and the subsequent B time steps, denoted
as buff . It computes two residual sum-of-squares (RSS) terms for a piecewise
linear fit; they are:

RSS1 = RSScurr[buff

RSS2 = RSScurr +RSSbuff

RSS1 determines the RSS for the combined set of curr and buff (a single
line was fit to the combination of both sets), while RSS2 determines the sum
of RSS for each set curr and buff (there were separate lines fit to curr and
to buff). These values are used to calculate the F-statistic associated with
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the two fits.

F =
(RSS1�RSS2

p2�p1
)

( RSS2
Tcurr[buff�p2

)
,

where p1 = 2 and p2 = 4, with p1 and p2 denoting the number of parameters
in each fit; Tcurr[buff is the total number of time steps being considered. The
F-statistic is used to determine whether one line or two lines would be a better
representation for the selected region of data.

The user also provides a second input value, ↵. For any data point in
curr and buff , when the data point maps to a value of the F-distribution
that is larger than the given ↵ value, this point is considered to be a change
point. For certain data sets, the ↵ criterion for change point detection can still
identify a larger number of change points than desired. Therefore, a third user-
defined parameter is considered, �2. The F -distribution is closely related to
the variance of the two sets of data, and because in most cases, closely located
data are correlated with each other, the �2 parameter takes this correlation into
account when detecting change points. This parameter directs the algorithm to
make it more di�cult to select change points in the presence of auto-correlation
of nearby points. For more details on this piecewise linear regression model,
see Section 3 of Myers et al. (2016).

When applying this technique to ocean data sets, smaller, “more discrete”
data sets resulted in more abrupt changes than the larger data examples used
in Myers et al. (2016). To address this issue, a wrapper function is added to
the algorithm that first searches for regions in the data where two or more
consecutive points have the same y-value; that is, flat regions of no change.
The first data point of a flat region is automatically marked as a change
point and the region of no change is marked as having no additional change
points. The piecewise linear regression algorithm is applied to every set of
remaining data points between these regions of no change to determine any
additional change points in the data. An additional optional parameter, nflat,
is introduced, ranging from two to n+1, where n is the size of the entire data
set. Only flat regions above that number of points are considered and marked
as having change points detected, with a value of n+ 1 indicating that a flat
region, regardless of size, should not be considered. When searching large data
sets of hundreds or more points, flat regions of two or three points might not
necessarily indicate significant change, so this parameter allows a user greater
control over the change points detected. Additionally, the first and last data
points of a data set are always marked as change points.

3 Results and Discussion

To explore the capabilities of Fourier analysis, wavelet analysis and change
detection, these methods are applied to six di↵erent data sets – four obser-
vational data sets and two simulation model-derived data sets. The simu-
lated data examples, an analyses of Cinema databases extracted from a Model
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for Prediction Across Scales-Ocean (MPAS-Ocean) (MPAS-Developers, 2013)
simulation (Petersen et al., 2013), serve as pedagogical examples to illustrate
the application of the change detection algorithm to simulated ocean data.
Fourier transform and continuous wavelet analysis of this data do not prove
to be informative due to the small size of the data. To more directly compare
Fourier and wavelet analysis to change detection, the observational data sets,
data extrapolated from Antarctic ice cores (Bereiter et al., 2015), d18O read-
ings from the Benthic zone of 57 globally distributed locations (Lisiecki and
Raymo, 2005), the Oceanic Niño Index from the Niño 3.4 region (Oceanic
Nino Index, 2018) and the North Atlantic Oscillation Index (NAO, 2019)
proved more valuable. These data sets range in size from many decades to
millions of years, have well-studied periodic behavior and exhibit significant
geological events throughout the data. The case studies below utilize the Fast
Fourier transform and continuous wavelet transform functions from Matlab.
The change detection model is implemented in the R statistical environment.

3.1 A Pedagogical Example: Change Detection at Multiple Levels of ↵

To demonstrate the usefulness of piecewise linear regression change detec-
tion, it is applied to data derived from an MPAS-Ocean simulation. This
multi-resolution ocean simulation data set with identifiable eddies, currents
and other turbulent features is commonly used in the ocean science commu-
nity (Petersen et al., 2019; Golaz et al., 2019). A summary of the pipeline
described in this example is shown in Figure 2. From the MPAS-Ocean data,
Cinema image databases (Ahrens et al., 2014) of surface kinetic energy are
extracted. A Cinema database is a collection of images, each image a perspec-
tive projection of the simulation data to a 2D image plane. When generating
the Cinema database, the scientist must ensure the resolution of the images
is su�cient enough for their future analysis, similar to how they must ensure
the proper resolution of their original simulation. For this MPAS-Ocean Cin-
ema data set, the simulation is over-sampled to ensure that each component
of the simulation is represented by several pixels, ensuring a high quality of
input for image feature analysis. Contour features are then detected and ex-
tracted, using the method described by Banesh et al. (Banesh et al., 2017) to
identify features of interest, (bright green regions in Figure 3). The contour
detection technique takes the gray-scale version of a Cinema image as input.
It applies a user-defined threshold value and assigns all pixels in the image
above the threshold to a value of one, and all pixels below the threshold to
a value of zero. Every connected set of pixels with a value of one is consid-
ered to be a derived contour. The technique described is robust enough to
track slow moving features over small deformations such as the curvature of
the Earth’s surface. Change detection analysis is applied to a metric based on
these contours. There are multiple reasons why a climate scientist might opt
to use Cinema databases rather than analyzing the raw MPAS-Ocean data.
Feature detection on high resolution data can be time- and labor-intensive and
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may also require high performance computing support for analysis (Woodring
et al., 2015). Furthermore, many image processing techniques that are quick to
implement and apply to 2-dimensional data are much more complex and may
not be available for 3-dimensional data sets. The generation of a Cinema data
set allows for quick and accurate results (Banesh et al., 2017). The application
of the presented change detection technique to model-derived data shows the
capability of the overall approach where a complex, multi-dimensional model
is simplified for e↵ective statistical analysis.

MPAS-Ocean 
Simulation

Generate 
a Cinema 
database

Extract 
Features

Define an analysis 
metric and apply 
change detection

Cinema 
Database

Extracted 
Contour Features

Change Detection Results

Fig. 2: A diagram of the pipeline for the application of statistical change
detection to Cinema databases extracted from an MPAS-Ocean simulation.
From the MPAS-Ocean simulation, temporal Cinema databases are extracted at
a high image resolution. For each image, a set of contour features are extracted
at varying isovalues for analysis. Finally, for a particular parameter, e.g.,
isovalue or time, and for a particular metric, e.g., number of features detected,
change detection is applied for statistical insight.

Figure 4 shows the results of the change detection algorithm applied to
the contour threshold parameter of the contour detection algorithm presented
in Banesh et al. (2017). By holding the B and �2 values constant, ↵ is varied to
identify various degrees of change. In simulated data studies, such preliminary
steps might be necessary to narrow the parameter space before moving on to
time-based analysis. Figure 4(a) detects only the highest levels of change, from
zero to the maximum number of features detected. Figures 4(b)-(d) gradually
detect smaller levels of change until users can determine a level that fits their
needs. Each of the case studies examined in Section 3 explores the capability of
the change detection algorithm for a particular data set by varying the alpha
parameter. This is meant to characterize the method that has been described
and to show the flexibility of the algorithm through a pedagogical illustration.
Though the case studies explore the usefulness of multiple alpha values, it is
not expected that every user will find multiple values of alpha useful for their
specific goals.

3.2 A Pedagogical Example: Eddy Detection in the Agulhas Region

Mesoscale ocean eddies are widely studied in ocean science. They influence
the ocean’s biological network (Chelton et al., 2011), can contribute to heat



change detection for ocean data 9

Fig. 3: MPAS-Ocean image from a Cinema database of surface kinetic energy,
using a log-scale, hot-cold color-map (chosen for its high discriminative power
and minimal color vision issues (Turton et al., 2017; Samsel et al., 2015;
Ware et al., 2018)). Contour detection was applied with a threshold value of
77. Detected regions are highlighted in bright green.

transport over several hundred miles (Volkov et al., 2008), a↵ect weather
conditions in the ocean, and impact various other aspects of ocean dynam-
ics (McWilliams, 2008). A wide range of eddy detection and tracking tech-
niques have been explored. Chelton et al. (2007), Williams et al. (2011)
and Petersen et al. (2013) employed variations of the Okubo-Weiss crite-
rion to identify closed regions of uniform vorticity. Chaigneau et al. (2008)
and Chen et al. (2011) used versions of a parameter-based, geometric stream-
line clustering method, the winding-angle method, to find closed streamlines.
Souza et al. (2011) compared the Okubo-Weiss and winding-angle approaches
to a wavelet packet decomposition method (first introduced by Doglioli et al.
(2007)) to identify where one method might perform better than another.

The goal of this study is to identify when eddies spin o↵ from the Agulhas
Retroflection, an important task for understanding current and mesoscale eddy
behavior. To accomplish this goal, a database of MPAS-Ocean Cinema “raw
data” images for 60 time steps, each time step five days apart, is explored.
In a raw data image, each pixel value is set to the value of the underlying
MPAS-Ocean simulation it represents and is not altered by a color-map or
shading/lighting e↵ects. Therefore, a contour detection algorithm that is ap-
plied to this image provides a more accurate representation of the features
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present in the simulation. This study focuses on the region highlighted in Fig-
ure 5 and selects a constant contour threshold value of 13 using the contour
detection algorithm discussed Section 3.1. Time is mapped to the x-axis and
the number of eddies detected on the y-axis. The following change detection
parameter values are used: B = 3, ↵ = 1, �2 = 1, nflat = 2.

The results of change detection applied to this data are shown in Figure 6,
with change points depicted in green, orange or blue. Change points are cat-
egorized according to slope. When the slope from timeStep(changepoint� 1)
to timeStep(changepoint) is positive, the change point is marked as green.
When the slope is negative, it’s marked as orange. All other change points are
marked as blue. Of the 60 time steps analyzed, 10 are marked as change points
with a positive slope. These generally indicate the start of increased activity in
this region. The two main types of increased activity occur when a new eddy
separates from the Agulhas Retroflection or when one eddy splits into multi-
ple eddies during its trek across the South Atlantic. Of these 10 positive-slope
change points, six are time steps when a new eddy is separating from the Ag-
ulhas Retroflection, see Figure 6(b),(d). A visual inspection determined that
no false negatives are detected; time steps when a new eddy separates have
not been missed. E↵ectively, this has reduced the search space in determining
when new eddies emerge from the Agulhas Retroflection, from 60 time steps
to 10. Though this is a smaller, representative example, for larger data sets,
an automatic detection technique such as this can be invaluable.

3.3 Case Study: Carbon Dioxide Data in Antarctic Ice Cores

Bubbles of air trapped in yearly layers of snowfall in Antarctica and Greenland
provide scientists with a nearly million-year record of the Earth’s climate. Car-
bon dioxide (CO2) measurements show the cycles of ice ages approximately
every 100,000 years and the tight relationship between CO2 and proxies for
temperature such as oxygen-18 isotopes(Jouzel et al., 2007; Sigman et al.,
2010). Kilometer-long ice cores document past climate regimes and the tran-
sitions from glacial ages (ice ages) to interglacial conditions. They are used to
validate paleo-climate modeling studies and provide insights into the mech-
anisms of climate dynamics for guiding climate predictions (Stocker et al.,
2013).

The data used in this case study, Figure 7(a) is a reconstruction of the at-
mospheric CO2 concentrations for the past 800ka (kilo-annum, i.e., thousands
of years), extracted from ice cores from Dome C in Antarctica (Bereiter et al.,
2015). The values in this data set are a composite of values from a large set of
ice cores. Figure 7 shows results when performing change detection for various
levels of alpha (b)-(d), and it compares these results to results obtained with
continuous wavelet analysis (e) and Fourier analysis (f). Time 0 is present
time, and 800ka is past time; events occurred chronologically from the right
to the left of the graph.
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Since CO2 measurements portray the 100ka cyclical behavior very clearly,
this is an ideal data set to explore the benefits of piecewise linear regression
change point analysis. One of the advantages of this technique over other
methods is its capability to provide directional and positional information
that correlate the change points to events in time. Figure 7(b), when examin-
ing change at the highest levels, shows that the change points (black dotted
lines) correspond to the drastic and almost immediate regime transitions in
the data, the shifts from a glacial to interglacial period. Fast warming is plau-
sible due to the ice-albedo feedback e↵ect – ice that is melting melts more
ice, an e↵ect that compounds quickly. However, cooling is much slower, as can
be seen by the large regions with no change points (e.g., from about 150ka
to about 10ka). Additionally, the change point algorithm provides the scien-
tist with directionality when fitting linear segments to the data. These linear
segments indicate that most of the larger regions without change (indicating
more gradual change) occur when transitioning from an interglacial to glacial
period, and very rarely the inverse. Change detection also gives users control
over the level of change they are interested in. Similarly to determining the
coastline of a continent with higher levels of resolution as one zooms in, the
change in the data can be determined at finer levels of resolution by changing
the ↵ parameter, see Figure 7(b)-(d).

In comparison, the continuous wavelet spectrum provides localized time-
based information for frequencies in the data. Unlike the Fourier spectrum,
which identifies major cycles in a data stream, but cannot correlate that infor-
mation to specific time intervals, the continuous wavelet transform identifies
at what time intervals certain frequencies are more or less prominent. The con-
tinuous wavelet transform can be thought of as the Fourier transform rotated
by 90 degrees counter-clockwise, so the x values now map to the y � axis,
and replicated horizontally across time. In Figure 7(f), the Fourier transform
highlights the Milankovitch cycles at 100ka, 41ka and 23 ka (red dotted lines)
as some of the most prominent cyclical characteristics of this data. However,
with the continuous wavelet transform, see Figure 7(e), the 100ka cycle is only
prominent during the last 450ka and not clearly defined for the time frame
prior. This is visually evident in the di↵erence in cyclical behavior in the first
half of the data versus the second half. Though these are both informative
techniques, they present a global view of the data that is di�cult to relate to
specific historical events.

3.4 Case Study: Oxygen Isotopes in Benthic Sediment Cores

This study examines a collection of oxygen-18 isotope(d18O) records gathered
and synthesized from 57 deep sediment cores from around the world. The most
common oxygen isotope is 16O, while 18O occurs in about one of 500 atoms.
The isotope d18O serves as a proxy for temperature because “heavy water,”
H2

18O, requires more energy to evaporate than “light water,” H2
16O, which has

a lighter isotope of oxygen. Ocean water is enriched with d18O compared to



12 D. Banesh et al.

water in rain and snowfall, and the ratio is a function of temperature. Sediment
and ice core records show strong correlation between CO2 concentrations and
temperature proxies over the last million years (Jouzel et al., 2007).

Figure 8 shows the results of the various statistical algorithms applied to
the Benthic d18O data set. Time 0 is present time, and 4000ka is time in the
past (Lisiecki and Raymo, 2005). The first 800ka of this data set correlates
strongly with the data used in the previous case study.

The change detection graphs shown in Figure 8(b)-(d) progress from the
highest levels of change to the more minute levels of change. Similar to the
behavior in the previous data set, the change points (black dotted lines) in
Figure 8(b) capture the sudden regime shifts from the glacial to interglacial
states over the past million years, and correspond to known major glacial
events. The lack of change points in Figure 8(b) before one million years ago
signify a dramatic shift in behavior from the previous three million years to the
most recent million years. This shift is behavior is reflected in the continuous
wavelet transform, see Figure 8(e), where the frequencies at 100ka are much
more prominent for the first million years than for the rest of the graph.
However, other than noting that there is a significant lack of cyclical behavior
in data past the most recent million years, the continuous wavelet transform
says little else about what is happening. In contrast, by progression through
the change detection series shown in Figure 8, the scientist can extract more
information about the smaller fluctuations in the data, using break points
between the rises and falls. In the process, the first few cycles over the most
recent million years are also decomposed into finer components.

3.5 Case Study: El-Niño-Southern Oscillation

The El-Niño-Southern Oscillation (ENSO) is an important characteristic of
the coupled ocean-atmosphere system. Strictly speaking, the ENSO index is
the anomaly of the monthly average sea surface temperature over a region
of the equatorial Pacific, relative to the long-term mean, or climatology, for
that month (Oceanic Nino Index, 2018). This simple measure has far-reaching
correlations with temperature and rainfall. In the El Niño state (ENSO 2.4
index greater than 0.5), the southern US is wet and cool while the northeastern
US is warm, while during a La Niño state (ENSO 2.4 index less than -0.5) the
opposite is true (Fig. 9a, Wang et al. (2017))

ENSO is a classic example of oscillatory climate behavior, with periodic
regime shifts from one state to another. Typical ENSO cycles last for two
to seven years, as can be seen in the Fourier transform (Fig. 9(f)), but the
wavelet transform reveals that the exact nature of the periodicity varies from
decade to decade (Fig. 9(e)). The correct state of ENSO is a critical factor in
seasonal predictions, but the exact driving mechanisms of the timing remain
poorly understood. The change point detection analysis adds to the traditional
Fourier and wavelet analyses in that it highlights trends and the boundaries
between them. For a low alpha value of 1e�4, change point detection reveals
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the fastest changes from El Nino to La Nino, and vice versa (Fig. 9(b)). For
the mid alpha values the algorithm fits trends of 3-5 years (Fig. 9(c)), and
for a high alpha, it fits regular trends of 2-3 years (Fig. 9(d)). The piecewise
linear regression at varying alpha values highlights the span and direction
of ENSO oscillations. As the oscillations in this data are not as dramatic as
the previous two case studies, the change detection algorithm may sometimes
combine smaller peaks into a singular region of relatively consistent behavior.

3.6 Case Study: North Atlantic Oscillation

The North Atlantic Oscillation (NAO) is the most prominent pattern of at-
mospheric variability at northern latitudes during the cold season (November-
April). It sets the position of the jet stream, and is therefore highly correlated
with precipitation and surface air temperatures throughout North America
and Europe. The NAO index is defined as the normalized sea level pressure
di↵erence between the Azores in the subtropics and Iceland in the North At-
lantic.

The data examined in this study is a 12-month moving average of the
NAO Index (NAO, 2019). Figure 10 shows the results of applying di↵erent
change detection parametric combinations (b)-(d), and how they compare to
a continuous wavelet transform plot (e) and to Fourier analysis (f). From the
Fourier and continuous wavelet analysis, it can be seen that the majority of
the spectral power lies between 1 and 10 year-periods, that the spectrum is
slightly red (stronger at lower frequencies). The NAO is not periodic at any
particular frequency because these dynamics arise from climate noise rather
that oscillatory processes (Hurrell et al., 2003). The lack of periodicity can
also be seen in the results of the change detection algorithm ( Figure 10(b)-
(d)), where the length of the lines vary substantially. In the higher values
of alpha, Figure 10(c) and (d), the break points correspond to more drastic
regime shifts, from very high NAO Index to very low NAO Index values (or
vice versa).

From these results, it is clear that the algorithm presented in this paper
leads to a very di↵erent set of results when compared to Tomé and Miranda
(2004) for several reasons. First and foremost, this algorithm can be tuned to
capture the major shifts in the data, the anomalies that highlight the points in
data history that correspond to the most drastic changes. The algorithm pre-
sented by Tomé and Miranda (2004) is optimized to identify the larger trends
in data rather than more localized events. Additionally, because the algorithm
presented here does not require the user to define a minimum time period
between each break point, as Tomé and Miranda (2004) does, it does not force
a ‘pseudo-frequency’ on the results based on that parameter. Our results are
entirely data-driven, whereas defining a minimum time between break points
injects a underlying periodic assumption to the data. The authors in Tomé
and Miranda (2004) acknowledge in their paper that defining a minimum time
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between breakpoints can lead to false results, when a break point is defined
by that restriction rather than the data itself.

3.7 Discussion

Based on the presented case studies, it can be concluded that a piecewise
linear regression change detection algorithm provides a unique perspective
for geophysical data analysis that cannot be attained with Fourier transform
or continuous wavelet analysis. This tool provides an analytic, reproducible
method for identifying points of change in a mathematically meaningful way.
Identifying break points and determining if and how they correlate to the
Fourier and continuous wavelet transform results provided the scientists with
a unique perspective that may lead to a more insightful examination of their
data. Table 1 summarizes the advantages and disadvantages of the discussed
techniques.

Advantages Disadvantages

Piecewise linear
regression change
point detection

- Exact time of events
provided, corresponding to
geologically meaningful
events
- Slope of linear regression
lines provide direction

- Applicable to smaller data

- Not providing a global
or time-integrated view

Fourier transform
(spectral analysis)

- Cyclical components

denoted by power at
each frequency
- Amplitude denoting
importance

- Time: no information as
to when events occur
- No direction

- Localized in frequency only

Continuous wavelet
transform (symmetric)

- Localized time: localized
in time and frequency
- Informing scientist when
certain oscillations occur
and duration of events
- Amplitude/color denoting
importance

- No direction

- Exact time of events
not provided

Table 1: Advantages and disadvantages of statistical analysis approaches.

4 Conclusions

The four case studies and other examples presented in the paper show that
piecewise linear regression change point detection allows scientists to explore
cyclical geophysical data in distinctive ways when compared to Fourier or con-
tinuous wavelet transforms. Additionally, it can be inferred that linear change
detection algorithms are more suited for cyclical data because it captures the
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behavior of regime shifts in the data that might not be as apparent with other
change detection methods. In the future, the comparative analysis presented
in this paper can be expanded to directional wavelets and other statistical
methods. A mapping of the benefits of one technique over another would be
useful for a scientist looking to add another tool to their analysis arsenal. Fu-
ture work also involves a deeper analysis of the results of the change detection
algorithm. Results can be ordered to understand the largest change in data
values, categorized in a histogram to understand trends in the data and com-
pared with known historical events to gain more insight from geophysical data.
This technique can also be expanded to multi-variate, n-dimensional climate
and geological data for a more advanced analysis.
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(a) B = 10, ↵ = 1e�15, �2 = 1

(b) B = 10, ↵ = 1e�9, �2 = 1

(c) B = 10, ↵ = 1e�5, �2 = 1

(d) B = 10, ↵ = 1, �2 = 1

Fig. 4: Contour detection (Banesh et al., 2017) applied to the MPAS-Ocean
Cinema image shown in Figure 3. The contour threshold value is varied from
0 to 255 on the x-axis and the number of features detected is plotted on the
y-axis. Change detection is then applied to this graph, holding B constant at
10 and �2 constant at 1, while varying ↵. The blue dots are the change points
detected, and the red lines show the piecewise linear regression fits to the data.
As ↵ decreases, the number of change points decreases and only corresponds
to the higher degrees of change in the data. As ↵ increases, change points
corresponding to smaller degrees of change are included. The parameter nflat

is set to 257 as to have no impact on these results.
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Fig. 5: MPAS-Ocean Cinema “raw data” image of kinetic surface energy. A
log-scale, blue color-map is used for visualization purposes only; actual analysis
is conducted on the underlying data. The boxed region in yellow is the region
of interest for this example.
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(a) B = 3, ↵ = 1, �2 = 1, nflat = 2

(b) Time = 8, Eddies = 8

(c) Time = 9, Eddies = 9

(d) Time = 31, Eddies = 7

Fig. 6: Eddies are tracked in the Agulhas Retroflection region over 60 time
steps. Change points are shown as a combination of blue, green and orange,
where green change points indicate a positive slope from the previous step to
the change point, orange indicates a negative slope, and blue indicates a zero
slope. Green change points indicate the start of increased activity in the region:
either a new eddy separates from the Agulhas Retroflection, as in (b) and (d),
or one eddy splits into multiple eddies, as in (c). The new eddies are identified
by the red dots in (b)-(d).
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(a) Composite CO2 record data

(b) Change detection at: B = 30, ↵ = 1e�36, �2 = 1

(c) Change detection at: B = 30, ↵ = 1e�21, �2 = 1

(d) Change detection at: B = 30, ↵ = 1e�10, �2 = 1

(e) Continuous wavelet transform (log scale)

(f) Fourier transform

Fig. 7: Comparison of Statistical Analysis techniques for the Composite CO2

records (NCEI, 2018). Given the data, (a), change detection at multiple levels,
(b)-(d), is defined by varying ↵ from 1e�36 to 1e�10. In these graphs, the
change points are defined by the black dotted lines, and the liner regression
fits, by the red solid lines. The continuous wavelet transform, (e), and Fourier
transform, (f), give the scientist a global view of the major cyclical elements.
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(a) LR04 Benthic Stack data, proxy for temperature

(b) Change detection at: B = 10, ↵ = 0.1, �2 = 1

(c) Change detection at: B = 10, ↵ = 0.8, �2 = 1

(d) Change detection at: B = 10, ↵ = 0.9, �2 = 1

(e) Continuous wavelet transform (log scale)

(f) Fourier transform

Fig. 8: Comparison of Statistical Analysis techniques for the d18O Benthic
Stack data (Lisiecki and Raymo, 2005). Given the data, (a), change detection
at multiple levels, (b)-(d), is defined by varying ↵ from 0.1 to 0.9. In these
graphs, the change points are defined by the black dotted lines, and the liner
regression fits, by the red solid lines. The continuous wavelet transform, (e),
and Fourier transform, (f), give the scientist a global view of the major cyclical
elements.
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(a) Oceanic Niño Index

(b) Change detection at: B = 25, ↵ = 1e�4, �2 = 1

(c) Change detection at: B = 25, ↵ = 1e�2, �2 = 1

(d) Change detection at: B = 25, ↵ = 1, �2 = 1

(e) Continuous wavelet transform (log scale)

(f) Fourier transform

Fig. 9: Comparison of Statistical Analysis techniques for the Oceanic Niño
Index (NinoData, 2018). Given the data, (a), change detection at multiple
levels, (b)-(d), is defined by varying ↵ from 1e�4 to 1. In these graphs, the
change points are defined by the black dotted lines, and the liner regression
fits, by the red solid lines. The continuous wavelet transform, (e), and Fourier
transform, (f), give the scientist a global view of the major cyclical elements.
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(a) North Atlantic Oscillation Index

(b) Change detection at: B = 25, ↵ = 1e�3, �2 = 1

(c) Change detection at: B = 25, ↵ = 1e�2, �2 = 1

(d) Change detection at: B = 25, ↵ = 1e�1, �2 = 1

(e) Continuous wavelet transform (log scale)

(f) Fourier transform

Fig. 10: Comparison of Statistical Analysis techniques for the 12 month mov-
ing average of the North Atlantic Oscillation (NAO, 2019). Given the data,
(a), change detection at multiple levels, (b)-(d), is defined by varying ↵ from
1e�3 to 1e�1. In these graphs, the change points are defined by the black dot-
ted lines, and the liner regression fits, by the red solid lines. The continuous
wavelet transform, (e), and Fourier transform, (f), give the scientist a global
view of the major cyclical elements.
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