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Abstract
The analysis of aerosol emission sources involves mass spectrometry data factorization, an approximation of
high-dimensional data in lower-dimensional space. The optimization problem associated with this analysis is
non-convex and cannot be solved optimally with currently known algorithms, resulting in factorizations with
crude approximation errors that are non-accessible to scientists. We describe a new methodology for user-guided
error-aware data factorization that diminishes this problem. Based on a novel formulation of factorization basis
suitability and an effective combination of visualization techniques, we provide means for the visual analysis of
factorization quality and local refinement of factorizations with respect to minimizing approximation errors. A
case study and domain-expert evaluation by collaborating atmospheric scientists shows that our method commu-
nicates errors of numerical optimization effectively and admits the computation of high-quality data factorizations
in a simple way.

Categories and Subject Descriptors (according to ACM CCS): I.5.5 [Pattern Recognition]: Design Methodology—
Feature evaluation and selection

1. Introduction

Atmospheric particles have been shown to increase morbid-
ity and mortality in urban areas and to alter the Earth’s radia-
tive energy balance. A key step in delineating this problem
is identifying the emission sources of ambient airborne par-
ticles. Using innovative instruments, atmospheric scientists
are now able to chemically analyze aerosols in real time,
providing unprecedentedly rich data sets for air quality re-
search. These single particle mass spectrometers (SPMS)
measure the mass spectrum of aerosols, thereby, fundamen-
tally characterizing particles in high-dimensional space. An
exemplary mass spectrum is shown by Figure 1. In order to
factor out emission sources from these measurements, anal-
ysis requires non-negative matrix factorization (NMF). The
optimization problem can be defined as follows: given data
that is derived from a combination of unknown sources in
unknown abundance and combination, the goal is to factor
out both unknowns, provided only with an estimate of the
number of sources and an assumption of their mixing model.
In air quality research, sources represent a non-negative (and
non-orthogonal) basis in high-dimensional space, by which
SPMS samples are approximated linearly as coefficients to
the basis. However, computing suitable basis vectors and
coefficients proves difficult in practice, as the optimization
problem is ill-posed and non-convex. Currently known al-

gorithms produce sub-optimal factorization results. The ap-
proximation error can be defined as the discrepancy between
data and its lower-dimensional approximation. While such
errors are, in general, unavoidable in dimension reduction,
they can be increasingly large for sub-optimal factorizations
and hard to assess by atmospheric scientists without the
proper visual analytical tools. However, the visual communi-
cation of errors in non-negative matrix factorization has not
been studied in visualization research and common visual-
ization tools are not applicable to this problem.

We discuss our new approaches for the visual analysis of
approximation errors in non-negative matrix factorization,
by describing (i) a methodology to assessing the quality of a
factorization basis based on the amount of information intro-
duced by each basis vector, (ii) a visualization of factoriza-
tion errors designed to depict the major features that are in
the data but not included in its factorization, and (iii) means
to interactively minimize specific errors. During analysis,
the scientist can compare the numerical benefit in introduc-
ing a basis vector that minimizes error features selected in
the visualization against the benefit of each vector currently
in the basis. Following this methodology, the scientist can
discover and overcome “being stuck” in local optima of non-
convex factorization interactively, consequently improving
the factorization quality. Due to the high degree of interac-
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Figure 1: The mass spectrum of an aerosol represents a pat-
tern (coordinates) that quantifies the abundance of inher-
ent fragment ions (peak labels) per mass (dimensions). Data
factorization provides lower-dimensional representations of
aerosols in terms of latent components of these patterns.

tivity in this analysis, our method also provides an awareness
about the information loss associated with the dimension re-
duction process and allows for an educated decision on the
degree of freedom needed to approximate high-dimensional
SPMS data. Thereby, we contribute both to air quality re-
search by providing novel means that aid in the research of
aerosol emission sources, as well as to the science of visual
data analysis itself by furthering research on error-aware di-
mension reduction.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses related work in data factorization, visual-
ization, and air quality research, while Section 3 provides
the necessary background for our effort. Section 4 describes
our method, entailing a description of our methodology, the
projection of factorization errors, our approach to interac-
tive analysis and refinement of the factorization, as well as
implementation remarks. Section 5 demonstrates how this
method is effectively applied in the factorization of SPMS
data collected during biomass combustion and evaluated
with respect to its ability to produce new insights to the ap-
plication of air quality research. Finally, concluding remarks
are given in Section 6.

2. Related Work

In air quality research, non-negative matrix factorization
(NMF) methods are used to classify airborne particle types
[KBHH05]. NMF [CJ10] computes a non-negative linear ba-
sis transformation that approximates high-dimensional data
in lower-dimensional space. As opposed to classical data
mining approaches [ZIN∗08], NMF is potentially more suit-
able to support in the interpretation of data from single par-
ticle mass spectrometers (SPMS), as it provides non-binary
classification of data in terms of non-negative combination
of latent physical components. Like many other physical
variables and combination, mass is non-negative, render-
ing non-negativity an integral property for analyzing SPMS

data. The NMF method analyzed in this work is based on the
original research discussed in [KP08] and [WR10]. The for-
mer provides a framework for alternating non-negative least
squares, while the latter shows how the use of a decorre-
lation regularization term derives independent components
in non-negative data. Section 4.4 describes a computation-
ally more efficient formulation of the algorithm. A common
problem with the approaches mentioned above is that they
minimize a non-convex objective function and consequently
suffer from the presence of local optima. Other work offers
a convex model to NMF but is constrained to a convex com-
bination of data points [EMO∗11]. In addition to finding an
optimal solution, interpretability is often the greatest prob-
lem when working with dimension reduction. Making these
approaches more accessible to domain scientists is an ongo-
ing visualization research problem.

In the field of visualization, visual steering of exploration
[SLY∗09] and simulations [LGD∗05, WFR∗10] has become
a well-established research areas. Enabling user interaction
in dimension reduction has demonstrated similar success
[PEP∗11] and proven that user-guided approaches in data
analysis can excel unsupervised methods in terms of quality
and interpretability. However, visually interfacing practical
engineering optimization has not been a focus of visualiza-
tion research. Although, visualizing high-dimensional data
factorizations can be regarded as part of multivariate data
visualization [WGK10, GTC01]. Driven by applications, re-
search focuses on better representation of specific data prop-
erties (e.g., scientific point cloud data [OHJS10]), better in-
corporation of domain-appropriate analysis techniques (like
brushing and filtering [JBS08]), or computational speed
gains [IMO09]. Other research in this area has focused
on enhanced cluster visualization [JLJC05, RZH12], brush-
ing techniques [EDF08, HLD02], abstraction [WBP07], and
clutter reduction through dimension ordering [YPWR03,
FR11] to enable data comprehension. However, due to the
high complexity and dimensionality of SPMS data, as well
as the fixed order of dimensions in the mass spectrum, many
approaches as, for example, clustering, transfer functions,
dimension reordering, or edge-bundling, are not feasible for
the visualization of factorization errors.

Recent work [EGG∗12] demonstrates that SPMS data
analysis can greatly benefit from visualization. Factorization
errors were visualized by depicting residuals for every data
point in every dimension. An example is given in Figure 2.
This visualization is based on parallel coordinates [Ins09]
and can lack the capacity for conveying approximation er-
rors effectively. The presentation can become highly dense
and cluttered, rendering it unsuitable to analyze factoriza-
tions of large data sets. In contrast, the present work focuses
on visualizing factorization errors by a projection designed
to convey an overview of approximation errors by severe-
ness, type, and abundance. We provide this overview in ad-
dition to detailed representations and describe a complete
methodology to SPMS factorization analysis.
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Figure 2: Previous work visualizes the errors produced by
SPMS data factorization in high detail. Due to data com-
plexity and dimensionality, this representation is prone to vi-
sual clutter and fails to provide an overview to analysts who
are faced with the problem of identifying, classifying, and
analyzing error features.

3. Requirements Analysis

In the following, a brief account of the application back-
ground is given. This is followed by a problem definition
that involves a description of errors in SPMS factorization
and our terminology used in this paper. Finally, we describe
the tasks and requirements arising from this problem for the
application of air quality research.

3.1. Application background

Single particle mass spectrometry (SPMS) is used in air
quality research to categorize, collect, and analyze aerosols
at sampling sites of atmospheric interest. Analyzing the par-
ticle’s composition is an essential step in this research. One
way to ascertain a footprint of an aerosol is by single parti-
cle mass spectrometry. The mass spectrum of a particle rep-
resents a function that maps mass to abundance within the
particle. More precisely, it maps the abundance of fragment
ions per mass over elemental charge (m/z). Discretized in
bins of 1 m/z step size, typical SPMS analyzers capture the
first 256 m/z ratios for aerosols. The histogram data is stored
as a 256-dimensional positional vector, where each coordi-
nate corresponds to the abundance of fragments within the
aerosol having an m/z ratio within the dimension’s section
of the discretized spectrum.

Particle composition can be described by the linear com-
bination of latent sub-fragments. Consequently, SPMS data
X ∈ !+

(n×m), holding n particle spectra discretized in m
dimensions, can be described by the m-dimensional mass
spectra of fragment ions as a basis B to X , such that

X =CB +N (1)

Here, B is the matrix storing (row-wise) basis vectors, B j,• ∈
!m
+, 1≤ j ≤ k, such that X is derived with the coefficient ma-

trix C and the noise N induced by the instrument. Note that
all coordinates are non-negative. The problem is ill-posed

because C, B, and N, as well as k are unknown, rendering
the factorization of SPMS data by an independent basis in-
herently non-convex. However, the method that is described
in the following can cope with these conditions and produce
viable solutions to the problem.

Non-negative matrix factorization (NMF) computes a ba-
sis B ∈ !+

(k×m) and coefficients C ∈ !+
(n×k), by mini-

mizing the global mapping error,

J = ||X −CB||2F → min, (2)

subject to all values in C and B being non-negative. ||.||F de-
notes the Frobenius norm. The dominant approach for min-
imizing J is by updating C and B at each position by its
gradient. We apply a gradient-based two-block optimization
scheme according to [KP08] and use multiplicative update
rules described in [LS00]. We note that minimizing one ma-
trix, while the other is fix, represents a convex optimization
problem. We first update C while keeping B fix. If B is ini-
tially globally optimal, then updates converge to equally op-
timal coefficients.

In addition to minimizing the overall mapping error J, ap-
plications may impose additional criteria, one of the most
common is feature independence. In the context of mass
spectrometry, this criterion is understood as the goal of mu-
tually decorrelating the coefficients of basis vectors, which is
described by the objective function JC defined by the squared
Frobenius norm of the uncentered correlation matrix:

JC = ∑
1≤i, j≤k

(
(CTC)i, j

||C•,i||F ||C•, j||F

)2

→ min. (3)

Thereby, the partial derivative of JC is evaluated at each po-
sition of C for each update. Although this approach to NMF
is both flexible and powerful, given the complexity of the
problem, drawbacks lie with the slow convergence speed of
gradient descent and in its proneness to become “stuck” in
local optima. In addition, it requires one to determine an ad-
equate estimate of the number of sources k given as an in-
put. While computational speed can be improved by a GPU
implementation, as described in Section 4.4, the latter two
problems can most likely not be solved algorithmically. We
contribute to solving these problems by describing an error-
based methodology to interactive factorization analysis that
aids scientists both in uncovering local optima and in making
an educated decision concerning the value of k, the number
of basis vectors.

3.2. Errors in SPMS data factorization

A multitude of errors are involved in the various stages prior
to SPMS data analysis, including but not limited to, data ac-
quisition, sensor measurements, bit noise, integration of the
mass spectra, dimension reduction, gradient descent, and vi-
sual mapping. While many of these errors are marginal or
cannot be determined, the errors introduced by dimension re-
duction can be both considerably large and determined based
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on the original data as ground truth. Given the complexity
of high-dimensional SPMS data (that is almost of complete
rank), any mapping to lower-dimensional space produces in-
formation loss. Although this is inherent to dimension reduc-
tion and can be accepted in many domains, it is of particular
importance to researchers that rely on non-convex factoriza-
tion. As opposed to convex problems (for example, singular
value decomposition), optimal results of non-convex factor-
ization cannot be achieved by algorithms in realistic time.
Moreover, there is no way to ascertain how close a solution
is to being optimal.

We focus on visualizing approximation errors introduced
by non-convex factorization and further provide means for
analyzing the necessity of these errors. Consider a factoriza-
tion for n data points of dimension m, X ∈ !+

(n×m), in co-
efficients C ∈ !+

(n×k) and basis B ∈ !+
(k×m) for k ' m.

For the purpose of this work, we define the error of a fac-
torization as the discrepancy between the original data and
its factorization: X −CB ∈ !(n×m). Hence, errors are high-
dimensional residuals, given by the misfit for each point in
the data. Note that we impose no restrictions on the errors, as
they may be both positive or negative and of arbitrary mag-
nitude, as depicted in Figure 2.

In addition to the errors introduced by dimension reduc-
tion, a SPMS factorization largely exhibits noise that is as-
sumed to follow a Gaussian distribution (for example, due
to gradient descent optimization and sensory noise). For the
analysis of a suitable factorization basis, these error contri-
butions are of relatively low interest to analysts, as they are
both unavoidable and practically independent of the factor-
ization basis. In contrast, specific error features that are of
interest to analysts are those that significantly deviate from a
Gaussian distribution. If these specific error features occur in
abundance, they strongly indicate that the factorization basis
does not allow the depiction of these features in the data.
This may be either due to the dimensionality of the basis be-
ing set too low, or due to a sub-optimal factorization basis
that does not cover significant parts of the data.

In this paper, we make use of terms as significance and
optimality. However, it should be noted that optimality, with
respect to the analytical purpose of the analyst, can hardly
be pre-defined. We resort to this terminology with respect to
the quantity of information (variance), as the quality of in-
formation cannot be assessed numerically. As such, we de-
fine the overall error of a factorization by a norm of its errors
(||X −CB||) and define a factorization to be optimal that pro-
duces a minimal overall error. However, at no point during
analysis do we dismiss any solution because of numerical in-
efficiency. To determine what may serve as adequate to the
current purpose of analysis is left to the analyst.

3.3. Requirements and Tasks

Based on our collaboration involving atmospheric and com-
puter scientists, we can conclude that a methodology is

needed to (i) assess factorization quality, i.e., the efficiency
of a basis in approximating the data, and (ii) assess the errors
of a factorization, i.e., the information loss in the approxima-
tion. Thereby, analytics to ascertain basis efficiency must be
tightly coupled with the visualization of error features (and
their significance) to aid the scientist when deciding which
errors to admit as a consequence of dimension reduction in
order to weight quality against dimensionality of the approx-
imation. As errors may be unnecessarily large for inefficient
bases, it is only by the conveyance of both properties (ef-
ficiency and error) that scientists can determine the “right”
dimensionality for the basis and, consequently, determine an
adequate approximation of the data. Finally, this methodol-
ogy to error-based analysis should include the means to sys-
tematically refine factorizations towards minimizing errors.
In summary, the key tasks and requirements for the visual
analysis of errors in SPMS data factorizations are:

1. Analyzing basis efficiency:
In assessing the quality of a factorization, it is impor-
tant to understand where errors originate from, as they
may stem from either (i) due to shortcomings of the opti-
mization process (local minima) or (ii) due to a necessity
in dimension reduction defined by basis dimensionality.
Visualization should help to answer this question and, if
possible, uncover inefficiencies of the factorization basis
with respect to approximating the data.

2. Visualizing error features:
In dimension reduction, even an optimal factorization ba-
sis produces approximation errors. However, the errors
that are numerically less important may be more impor-
tant to the scientist. In order to determine an adequate ba-
sis dimensionality and to verify factorization quality, vi-
sual assessment of factorization errors is a crucial step. A
visualization of factorization errors should convey a clas-
sification of errors by importance and type, and serve as
a basis to conduct detailed analysis. One major require-
ment for this is the visual separation of noise from spe-
cific error features. Most importantly, the visualization
should account for an intuitive assessment of how much
of the data is factorized with (less significant) small er-
rors following a normal distribution over all dimensions,
as opposed to how much of the data is not well repre-
sented, producing errors of (significant) specific features.

3. Refining factorizations:
Once errors are identified during the analysis that are un-
acceptable, an analytical system should entail the refine-
ment of the factorization towards eliminating these er-
rors. A key necessity of this requirement is interactivity
of the data factorization and providing visual feedback
concerning the benefit of adjustments.

Our method aims at satisfying these requirements.
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4. Method

Since optimization methods cannot guarantee optimal solu-
tions to non-convex problems in practical time, it is hoped
that by combining the knowledge and intuition of domain
experts with the computing power of machines, admissible
solutions can be found. The core of our approach involves
therefore interfacing optimization and visualizing factoriza-
tion errors in a comprehensible manner that allows for anal-
ysis and interpretability. Essential to this concept is a highly
visual and analytical framework that involves the analyst in
several key steps of the factorization. We describe how fac-
torization quality can be analyzed, sub-optimality assessed
and the factorization be improved.

4.1. Assessing Optimality

Visualizing optimality of a factorization is a challenging
task, as there exists no method that can spot local minima
or quantify their (sub-)optimality effectively. However, con-
sidering the following concept leads to the conclusion that
local minima in non-negative matrix factorization can in fact
be revealed with the help of visualization and interaction.

An optimal data basis must consist of basis vectors that
are all optimal. Consequently, the exchange of one vector in
the basis set must not produce a (numerically) better approx-
imation. Further, for a sub-optimal data basis must hold that
there are better basis vectors. These would contribute less
to the overall error, with respect to lowering error magni-
tudes in their abundance (accumulation) (see ()). Moreover,
the more errors are similar, with respect to collinearity, the
better they can be approximated by a basis vector. Thus, the
numerical benefit of a vector to be included in the basis, is
directly reflected by and can be identified based on similar
errors of high magnitude and abundance. This leads one to
conclude that optimality can be assessed by comparing the
amount of information that can be conveyed by a basis vector
candidate hidden in the error against that of each vector cur-
rently in the basis. Consequently, visually highlighting error
magnitudes, similarity, and abundance, as well as introduc-
ing a measure of information content per basis vector and
accounting for visual comparison between each basis vec-
tor’s numerical benefit, local minima in the factorization can
be revealed in analysis.

Based on these considerations, we compute and visualize
a “gain” measure for each basis vector that quantifies how
each individual basis vector (and its coefficients) contributes
to the reconstruction of the data. By visualizing the gain of
each basis vector, both in relation to each other, as well as
in relation to potential basis candidates (selected by the user
based on errors to eliminate), we can visually expose sub-
optimal solutions. Since sub-optimal solutions for b ∈ !m

and Cb ∈ !n contribute little to large parts of X , they pro-
duce (a) a small gain and (b) large errors. Thereby, spotting
a local optimum reduces to identifying the basis vectors of

small gain and comparing them to the gain of the basis vec-
tors that eliminate large errors. This requires two concepts:
(1) visualizing the gain of each basis vector and (2) visual-
izing the benefit after adjustment of the basis (as direct vi-
sual feedback). The key idea for defining a basis gain is de-
rived from spectral decomposition in which the variance of
the total decomposition equals the sum of the variances of
each individual contribution. Since basis vectors are in gen-
eral not mutually orthogonal, their contributions do overlap.
However, in NMF, coefficients are exclusively non-negative.
Consequently, each basis vector b only adds to the total re-
construction of X according to its coefficients Cb and does
not delimit other basis vector’s contributions. However, it is
possible that Cbb explains more variance than what is present
in the data. Therefore, the gain of b must be based on how
Cbb matches the data X , defined as follows:

gain(b) = ||X ||1 −||X −Cbb||1 (4)

Analysis of this measure facilitates insight into the impor-
tance of a basis vector in a factorization. Basis vectors of
small gain hint at local minima in the computation, while
high gain values, in spite of high errors, suggest at the de-
gree of freedom being set too low for the basis.

4.2. Projection of Factorization Errors

In the following, we describe the design of a visualization
that focuses on providing an overview of factorization errors,
while highlighting error classes for identifying possible basis
vector candidates. Thereby, we rely on two major classifiers
for factorization errors:

• error magnitude and
• error irregularity.

Gaining an overview of a factorization error requires, first
and foremost, the visual assessment of the numerical misfit
between the original data and its factorization.Error mag-
nitudes classify error severeness per data point by a norm.
While different norms may be suitable for this task depend-
ing on the application, we apply the Euclidean norm to quan-
tify the error magnitudes of SPMS factorization, since it em-
phasizes larger misfits over smaller ones. Additionally, we
classify errors by a measure of irregularity that is orthogo-
nal to error magnitudes and suggests a misfit in the factor-
ization basis, as opposed to inadequate numerical computa-
tions. This measure of irregularity is defined as follows:

α(e) = 1−
cos( (abs(e),1)− 1√

m

1− 1√
m

, where (5)

cos( (abs(e),1) = ||e||1/(||e||2
√

m)

Thereby, the dominance of a (sparse) feature in the error is
defined by the cosine of the angle between its absolute and
1 ∈!m, the vector of ones in all coordinates. Independent of
the error’s magnitude, it holds a measure of irregularity for
0 ≤ α(e) ≤ 1, where an error of equal absolute coordinates
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leads to a value of 0 and a unit vector to 1. Figure 3 illus-
trates how this measure is interpreted to SPMS factorization
errors. Based on this measure, our projection φ , depicting
error magnitude and irregularity, is defined as follows:

φ : !m →!2 (6)
e *→ (α(e), ||e||2)

Here, e refers to one of n errors, each consisting of m resid-
uals. The y-axis of this projection maps the magnitudes of
the factorization errors for each data point, while the x-axis
maps to α(e), which measures the dominance of a specific
feature in the residuals of an error, as opposed to showing
uniform residuals.

When using this mapping, errors of the same magnitude
and regularity are mapped to the same locations, regardless
of their coordinates being identical. This problem is inherent
in dimension reduction and impossible to overcome. How-
ever, it can be at least partially alleviated by a color scheme
that shows additional differences. The eigenvectors associ-
ated with the three largest eigenvalues of the centered error
covariance matrix define an orthogonal projection to three
dimensions that can assign color values to each error ac-
cording to its spatial configuration in !m. Although prin-
cipal components are less suitable for the mapping of non-
orthogonal features than more sophisticated techniques (for
example, NMF), it is sufficient for our purpose without bur-
dening interaction time. As such, this color scheme visually
differentiates errors that are mapped in proximity while hav-
ing a different configuration of residuals.

For effective error investigation, the abundance of errors
within ranges of specific magnitude and irregularity must be
accounted for in the visualization. In order to convey infor-
mation about the quantity of errors belonging to the same
classifiers, the visualization must make aware of the concen-
tration of points within regions of the projection. However,
given limited resolution, the specific concentration of points
in a projection is visually impossible to assess for large data
sets. Although interactively zooming into a projection can
unclutter the point configuration, this does not provide quan-
titative insight into the point concentrations within a region.
While assigning opacity values to points, either by the use
of alpha blending or by application of a non-linear transfer

!

!

!

!

Figure 3: By utilizing a measure of error regularity (left:
regular *→ 0, right: irregular *→ 1), the presence of dominant
features in errors can be quantified, allowing for a visual
assessment of noise level.

function, can help convey point density, this approach does
not scale well with increasing number of data points.

In order to convey point concentrations within the projec-
tion, we use an approach known as density field contouring.
The computation can be summarized as follows. A high-
resolution 2D scalar field is computed that holds, for each
pixel, the number of points projected to this location. Subse-
quently, the field is processed via a convolution step using a
Gaussian filter kernel, which is scaled to have a peak height
of 1 that decreases to 0 over its bandwidth. The Gaussian fil-
ter smoothes the field and accumulates density values in the
locality of its bandwidth, producing a density field. A tex-
ture of contours can be computed, for example, by thresh-
olding for isovalues in the density field. Contours of equal
width in image space can be realized by setting the thresh-
old dependent on the local gradient of the density field. For
further information on kernel density estimation, we refer
to [WJ95]. This method is efficient, and the result is highly
effective, depicting quantities of points within regions of the
projection.

To summarize the properties of the error visualization de-
fined above, we list the main features in the following:

• Horizontal axis: irregularity of errors (feature domi-
nance)

• Vertical axis: magnitude of errors (Euclidean norm)
• Color: similarity of errors (in !m)
• Contours: local quantity of errors (point density)

Figure 4 shows examples for different data factorizations.

Interaction
The intuitive visual classifiers described above provide
excellent filtering capabilities for high-detail application-
specific visualizations. The selection of errors in a specific
magnitude-distribution range (regional selection) and/or
(sub-)selection of errors based on their spatial relationship
(color selection) in this visualization can be linked and act
as a filtering mechanism for different high-detail views.
Further sub-selection in high-detail views can effectively
identify errors that the analyst wants to eliminate. Once
errors are identified that are a potential basis vector can-
didate, we describe in the following how the factorization
is updated by incorporation of the candidate into the basis.
The scientist can compare the individual gain values and
how they would change.

4.3. Interactive Refinement

For facilitating visual comparison and for highlighting
changes, we depict the gain values for the basis in a bar chart.
After selection of errors, the analysts may request to visual-
ize the potential gain by the addition of a basis vector can-
didate that eliminates the selected errors with respect to the
previous configuration. The optimal basis vector that elim-
inates select errors is given by the mean of the data points
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(a) Errors of Gaussian noise (scaled) (b) Gaussian noise + irregular errors (c) Overview of SPMS factorization errors

Figure 4: An overview of factorization errors is achieved by projecting errors based on magnitude (vertical axis) and irregu-
larity (horizontal axis). Further classification of error types is provided by color (similarity) and density contours (abundance).

producing it, weighted by the absolute mean of the errors
per coordinate. As such, the basis vector is introduced that
has the exact features of the data points that are not cov-
ered by the factorization. The coefficient matrix is adjusted
projecting all data points onto the candidate vector and ad-
justing coefficients of the other basis vectors in relation to
how the candidate allows for a better representation, while
the coefficients for the candidate vector are generated con-
versely based on the best fit. Using the adjusted starting con-
figuration, NMF is run for several iterations to produce an
adequate estimate of the factorization quality that is achiev-
able by including the candidate. Subsequently, the gain of
the basis prior to adjustment is visualized in relation to the
gain post adjustment in the bar chart, while the differences
are highlighted. Figure 6 shows an example to this concept.
Interactivity is an integral part of this methodology and per-
forming optimization methods on the GPU is inevitable for
large data sets. We describe our implementation briefly in
the following.

4.4. Independence Regulation on the GPU

In [WR10], Wilson et al. described a term for regulating mu-
tual independence between the coefficients of basis vectors
in non-negative mixtures. Although being very robust, their
formulation requires no matrix inversion, making it more
flexible than previous approaches and fast to compute on the
CPU. The update of the coefficient matrix C, applicable to
multiplicative NMF update schemes, that regulates indepen-
dence is based on the derivative of a cost function JC mea-
suring correlation coefficients, as described by (3).

We note that the formulation given in [WR10] of the par-
tial derivative ∂J(C)/∂Ca,b, is not easily realized on a GPU
and can be reformulated more efficiently. By exploiting the
fact that the partial derivatives of the correlation matrix terms
are symmetric and populated only in a single row and col-

umn, we can greatly simplify the formulation as follows:

∂J(C)

∂Ca,b
= 4

∣∣∣
∣∣∣Corrb,• ⊗ (7)

(ncnT
c )b,• ⊗Ca,• − Ca,b

ncb
nc ⊗ (CTC)b,•

ncnT 2
c + ε

∣∣∣
∣∣∣
1

Here, ⊗ denotes the element-wise multiplication between
two matrices of the same dimensions, analogously to the di-
vision of ncnT 2

c which is understood as element-wise divi-
sion of the element-wise squared outer product matrix of nc.
The correlation matrix Corr and norm vector nc are given by

Corr = NCCTCNC , (8)
NC = diag(n−1

c ) , and
nc = (||C•,1||F , ..., ||C•,k||F ) .

The formulation (7) requires no index evaluations and only
k accumulations for updating each entry in C, as opposed
to k2. Consequently, computations are significantly faster,
while being solely based on general operations, lending it-
self towards a straightforward implementation on the GPU.

5. Results

A case study and domain-expert evaluation by atmospheric
scientists describes the value and usability of our method
in the following. We have been able to (i) produce factor-
izations of considerably higher quality than it was possible
before, (ii) process and analyze ten times more spectra than
in previous studies, and (iii) gain surprising insights enabled
by the visualization.

5.1. Case Study

The data we use as an example was collected from wood
stove exhaust using a single particle mass spectrometer
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[LR05]. Factorizations of this data are used to quantify emis-
sion sources of biomass combustion. This aspect is of inter-
est to atmospheric scientists, as biomass combustion is ubiq-
uitous, while being suspected to play a key role in present
day environmental concerns including health effects and cli-
mate change. The Pittsburgh June-July data (X) contains
roughly 70k particle spectra in 256 dimensions and was fac-
torized (in C and B) using an eight-dimensional basis. The
error in this factorization can be quantified in relation to the
data, ||X −CB||F / ||X ||F , producing a value of 31.1%. This
magnitude of information loss is typical for SPMS factoriza-
tion, making the need for analysis apparent. In our investiga-
tion, we first gain an overview of these errors in the projec-
tion shown in the center of Figure 5. The projection quanti-
fies the factorization error per data point based on magnitude
(y-axis) and irregularity (x-axis). Examples are shown on the
left and right side in the figure. The depth contouring in the
projection shows that the majority of the data is factorized
with good quality (low error magnitude/irregularity). How-
ever, large amounts of spectra are not well approximated.
The contours of the projection depict two local maxima in
error abundance, reflecting the spectra that are factorized by
low and high error magnitude, respectively, while irregular-
ity increases with magnitude.

These results support the initial assumption that there are
important features in the data that are not covered by the fac-
torization. Coarse classification of these error classes is pro-
vided by the coloring of points in the projection. There are
three major error clusters visible in the projection, shown by
the local abundance of green, blue, and red points. Selection

Figure 5: Errors of the factorization of Pittsburgh source
sampling data, June-July, 2002. Selecting errors by color
and/or region in the projection (center, also shown in Figure
4(c))) effectively filters high-level views and, thereby, makes
possible a detailed data analysis by uncovering errors of
high (right) or low (left) irregularity, magnitude, maxima of
abundance (bottom right), and provides further classifica-
tions by color. Red (bottom left), green (top left), and blue
(top right) error clusters are selected.

(a) Gain in minimiz-
ing green error clus-
ter

(b) Gain in minimiz-
ing blue error cluster

(c) Gain in minimiz-
ing red error cluster

Figure 6: The numerical gain in introducing basis candi-
dates minimizing specific errors is depicted. Sub-optimal
parts of the factorization are uncovered by exhibiting a
smaller gain than the analysts candidate (left and right). The
analyst can add the candidate to the basis, delete existing
parts, or continue analysis.

of these points allows for detailed investigation of the cor-
responding residuals to be conducted in a high-level view.
Such reveals that the error types are characterized by major
misfit of the factorization in the following features: (i) Pb+-
predominant error in green cluster (372 spectra), (ii) NO+,
SiO+ and Fe+ in blue cluster (151 spectra), and (iii) CxH+

y -
predominant in red cluster (7,851 spectra).

Having identified dominant error clusters, we investigate
the gain in minimizing these errors. Figure 6 shows the es-
timated improvement that can be gained by introducing a
basis vector that minimizes each of the error features. While
the (numerical) gain in reducing the error feature outlined
by the blue cluster is relatively low, it is considerably higher
for the green and red clusters. Noticeably, the gain in in-
troducing a basis vector for these clusters is higher than for
other basis vectors (noted by index 0 and 5 in the figure), as
computed by the initial factorization. Consequently, we have
shown that this basis is sub-optimal and have found alterna-
tives that improve the factorization.

As the initial factorization basis is shown to be sub-
optimal in this analysis, the overall error of the factorization
can be decreased, while keeping the same dimensionality of
the basis. With respect to refining the factorization, the sub-
optimal parts of the basis can be deleted and/or the more
suitable vectors (for the red and green error classes) added
to the basis. Subsequently, the factorization is recomputed
with the adjusted basis. In this experiment, we have deleted
the sub-optimal parts and introduced the two candidates of
higher gain instead. After convergence, the refined factoriza-
tion features an overall error of 24.7% in relation to the orig-
inal data. While being restricted to the same dimensionality
of the basis as the initial factorization, these results represent
an improvement of the overall error by 21.5%. An overview
of the remaining error is depicted in Figure 7(a). Noticeably,
both error features that were minimized in our refinement are
not apparent in the projection. However, there are two new
error clusters distinguishable at the top right corner of the
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(a) Errors of factorization using
an 8-dimensional basis

(b) Errors of factorization using
a 24-dimensional basis

Figure 7: By our methodology, atmospheric scientists are
able to produce data factorizations of higher quality. An
overview is provided of adequate factorization errors with
respect to basis dimensionality (8 and 24). (a) By controlled
refinement, local minima in the factorization could be uncov-
ered, leading to a decrease of the overall mapping error in
relation to the initial solution by 21.5%. (b) Higher quality
factorization can be achieved by increasing the dimension-
ality of the basis, accounting for an overall error of 14.8%
in relation to the original (256-dimensional) data.

projection, in addition to the blue cluster. These new clusters
correspond to the two basis vectors that have been deleted in
our refinement. Although of high magnitude and irregularity,
the clusters contain only a small number of spectra.

Our experiments have shown that significant additional
improvement of the factorization for this data set can only be
gained by increasing the dimensionality of the basis. How-
ever, the amount of information that is consequently added
decreases rapidly. Figure 7(b) shows the error projection for
a factorization of this data using a 24-dimensional basis. By
increasing basis dimensionality, an overall error of 14.8%
with respect to the original data was achieved. These results
make apparent the need for visual analysis in data factor-
ization. Looking beyond the scope of this work, results also
indicate that more research needs to be conducted to support
application domains. As such, actively searching for specific
error features may provide analysts with the ability to query
factorization errors and to quantify the quality of the approx-
imation with respect to these features.

5.2. Expert Evaluation

The recent advent of single particle and related real time
techniques in atmospheric science has increased the qual-
ity and quantity of available data, so that improvements
in data visualization and comprehension techniques are in-
creasingly desired. Single particle mass spectrometers and
other similar instruments that collect spectra in real time
generate a tremendous amount of data of high dimension-
ality. These huge, complex data sets pose challenges for at-
mospheric scientists that need to analyze the data for vari-

ous endpoints such as emissions source, atmospheric trans-
formations and toxicity. The high dimensionality of the data
also confounds comprehension by the atmospheric scientist
because so few dimensions can be readily observed.

The methods presented here reduce the dimension of the
data set dramatically by discovering the bases that underlie
the data and visually present the resulting information to the
scientist in a way that elucidates the factors that establish
the basis as representing significant pollutant sources or at-
mospheric transformations. In typical studies, the common
bases are hundreds or thousands of times more prevalent
than the uncommon ones so techniques for identifying the
bases must also take into account that bases with infrequent
spectra may have lower variability so appear more signifi-
cant. Data analysis must not arbitrarily exclude this impor-
tant information but instead communicate important basis
properties, such as efficiency, local minima, and information
loss, to the scientist.

Our system supports this objective and enables more ac-
curate and verifiable data analysis. The visualization makes
it possible to analyze and classify different basis sets with
respect to information loss and different objectives. Alterna-
tive basis configurations can be readily identified, by a clus-
ter in the projection, and then selected for analysis. Visu-
ally comparing the efficiency of basis vectors enables one to
explore alternatives and identify new bases. The interactive
nature of this new tool enables ready exploration of hypothe-
ses and discovery of aspects of such large data sets that one
might not be able to discover otherwise.

6. Conclusions

It is very important and difficult to address the issue of “er-
ror” in any data factorization method and application setting.
In our case, error can be inherently associated with the re-
sult of approximating original data in a lower-dimensional
space. Error magnitude and meaning are directly influenced
by the number of chosen basis vectors and the efficiency of
the basis transformation. This multi-criteria and non-convex
optimization problem cannot be solved in an optimal way by
known algorithms. It is therefore crucially important to have
the data analyst play an integral role in the entire process
of factorization: it is the expert’s insight and understanding
of a specific problem - understanding a set of several thou-
sand 256-dimensional data in our case - that allows us to
have a user involved in specifying the number of dimensions
needed for lower-dimensional approximation, in specifying
individual basis vectors, and in determining what is and what
is not a “good approximation.” Error quantification and visu-
alization, combined with the ability to interactively influence
the data factorization/approximation process, is thus a neces-
sary component of any system aimed at dramatically reduc-
ing the dimensionality of a complex and high-dimensional
data set to assist effectively with understanding. Our ap-
proach is exactly supporting this objective.
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