
Using R-trees for Interactive Visualization of
Large Multidimensional Datasets

Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

Institute for Data Analysis and Visualization (IDAV), Department of Computer
Science, University of California, Davis, CA 95616-8562

Abstract. Large, multidimensional datasets are difficult to visualize
and analyze. Visualization interfaces are constrained in resolution and di-
mension, so cluttering and problems of projecting many dimensions into
the available low dimensions are inherent. Methods of real-time interac-
tion facilitate analysis, but often these are not available due to the com-
putational complexity required to use them. By organizing the dataset
into a level-of-detail (LOD) hierarchy, our proposed method solves prob-
lems of both inefficient interaction and visual cluttering. We do this
by introducing an implementation of R-trees for large multidimensional
datasets. We introduce several useful methods for interaction, by queries
and refinement, to explain the relevance of interaction and show that it
can be done efficiently with R-trees. In order to project many dimensions
into lower-dimensional spaces used for visualization, we utilize properties
of the R-tree as well as existing methods for multidimensional visualiza-
tion. We examine the applicability of hierarchical parallel coordinates to
datasets organized within an R-tree, and build upon previous work in
hierarchical star coordinates to introduce a novel method for visualizing
bounding hyperboxes of internal R-tree nodes. Finally, we examine two
datasets using our proposed method and present and discuss results.

1 Introduction

As measuring instruments advance technologically, datasets increase in both
dimension and quantity. It becomes very difficult to interactively explore and
analyze large, multidimensional datasets because of the high computational com-
plexity required. Visualizing these dimensions also becomes a major problem for
large dimensionalities and large datasets since standard visualization interfaces
are constrained to a small number of dimensions and resolutions.

In fields of algorithms and complexity, efficient methods for data processing
are often introduced through the use of hierarchical data structures. We have
applied a hierarchical structure to large multidimensional datasets by generating
an R-tree that contains the dataset. We utilized the efficiency of R-trees by
implementing several interactive operations for analysis. Because large datasets
introduce problems of clutter for low-resolution visualization interfaces, we have
also used the hierarchical properties of R-trees to visualize the data at increasing
levels-of-detail (LODs).



2 Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

To achieve appropriate low-dimensional visualization of high-dimensional
data within a hierarchy, we have implemented existing methods of hierarchical
multidimensional visualization and have extended upon one of these methods in
order to accommodate it for more beneficial and efficient use within an R-tree
structure. Specifically, we have examined hierarchical parallel coordinates and
built on previous work to develop a new method for hierarchical star coordi-
nates.

2 Previous Work

2.1 Multidimensional Visualization

Multidimensional visualization explicitly involves the problem of how to project
d dimensions onto the a small number of dimensions available on visualization in-
terfaces. Popular methods to project d dimensions into lower dimensions include
using visual cues, multiple visualizations, and alternative coordinate systems.

Chernoff [1] introduced a method using visual cues which involved trans-
forming individual features of a face geometrically, and visualizing each multidi-
mensional element as the resulting face. However, he stated that this technique
is constrained to a small number of dimensions. This is an inherent problem;
visual cues must be explicitly defined for each dimension.

Wright [2] introduced the use of multiple visualizations by using scatterplot
matrices, where a matrix of two-dimensional scatterplots is displayed such that
every dimension is plotted against every other dimension. Several extensions of
multiple visualization schemes have been developed as well; however, with all
these techniques, either the number of dimensions is constrained by the screen
space available for multiple plots, or the visualization cannot display all dimen-
sions at once, which makes interaction and analysis more difficult.

Alternative coordinate systems, in contrast to visual cue-based and multiple
view-based multidimensional visualizations, attempt to provide a visualization
for an unlimited number of dimensions. We have implemented and built on two
of these techniques, specifically parallel coordinates [3] and star coordinates [4].

2.2 Hierarchical Data Structure Visualization

In order to generate a visualizable hierarchy from a dataset, several proposed
methods involve hierarchical clustering algorithms. Fua [5] presented one of these
algorithms based on proximity information and Linsen [6] presented another
one based on density functions. Though both are effective for generation of a
hierarchy, they both involve an added preprocessing step to cluster the data.
These approaches not only have high computational complexity for generation,
but for interactive operations, since these hierarchies are not guaranteed to be
balanced trees.



3

3 Main Idea

In this paper, we introduce an efficient method to generate a hierarchical struc-
ture of data which reduces computational complexity required for interactive
operations as well as methods for visualization of data within this hierarchical
structure. In contrast to previous work, our method provides a great degree
of efficiency and requires minimal data-specific information, while also adding
functionality for analysis.

We propose using R-trees to generate this hierarchy and examine the benefits
for doing so in section 4. R-trees provide functionally visualizable aggregate
items within an LOD-hierarchy while also increasing efficiency. These properties
serve to improve upon the problems encountered in some previous proposals (see
subsection 2.2).

We examine methods to visualize aggregate items as well as data items within
the R-tree, in section 5. Some of these methods are already defined in previously
published papers, and we introduce a new method to visualize multidimensional
R-tree aggregate items, based on some existing proposals. To analyze the ef-
ficiency and functionality of interaction, we examine two types of interactive
operations, queries and refinement, in section 6. Finally, we apply our proposed
methods on real datasets in section 7 and present and discuss our results.

4 R-trees: An Effective Data Structure for Interactive
Visualization of Large Multidimensional Datasets

In order to provide 1) a scalable hierarchy for large multidimensional datasets, 2)
visualizable and accurately representative aggregate items within that hierarchy,
and 3) efficient interactive operations on the structure, we propose organizing
datasets into R-trees.

4.1 Generation of an LOD-Hierarchy

R-trees generate a hierarchical structure of aggregate and data items in a “bottom-
up” fashion. All individual data elements are inserted into the leaves, or the bot-
tom level, and nodes are split into two new ones when their respective number of
children exceeds the maximum number of children, m. Whenever the root node
is split, a new level of detail in the hierarchy is introduced. Every internal node
of the R-tree contains not only a number of children, but also a region which
bounds all of its children, and this bounding region adjusts as nodes are split.
Node splitting in R-trees is a widely covered research topic, as the optimal so-
lution requires factorial time complexity [7]. Our method uses linear splitting, a
method which delivers accurate enough results for our application as well as lin-
ear time complexity1. Because of the way they are generated, R-trees represent
an LOD-hierarchy.
1 R-tree efficiency may be improved by using more advanced node-splitting algorithms.
For a more in-depth analysis, see Guttman’s [7], which offers several different node-
splitting algorithms with variable complexities and benefits.



4 Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

Fig. 1. Two R-trees with the same 8
elements inserted, but with different
user-specified values for m (maximum
number of children per node). The top
has an m value of 2 and 4 levels-of-
detail (LODs), while the bottom has
an m value of 3 and 3 LODs. The top
requires storage of 7 hyperboxes (one
per internal node), while the bottom re-
quires storage of 4. The ability to define
m allows for dynamic LODs and storage
space, and in turn, different quantities
of refinable hyperboxes and regions-of-
interest (ROIs) within each level.

R-trees allow for alteration of their internal tree depth, and different tree
depths directly affect both user preferences and storage space. We can control
the depth of the hierarchy by specifying different values form. A larger value ofm
corresponds to fewer splits and, therefore, fewer levels within the hierarchy. With
more children per node, there are more available refinable nodes per level and
less total aggregate items. This means that there are more detailed specification
of ROIs within a level, and less total internal storage space is required. However,
having too many children per node contributes to visual clutter and less LODs
within the hierarchy. For smaller datasets, a small value of m is useful, because
more LODs organize the data more efficiently for interactive operations and
introduce more LODs. Lower values do, however, increase the storage space. An
illustration of the differences between high and low m values is shown in figure 1.

4.2 Effective, Visualizable Aggregates

In order to allow for a scalable representation, we require a structure that not
only organizes the data into an LOD-hierarchy, but allows for appropriate visual-
ization of levels within it. For this reason, it is crucial that we generate aggregate
items that are accurately representative to the actual data, as well as usable in
various visualization schemes. An item that is accurately representative of the
data is one which does not remove semantic information from the dataset.

The R-tree aggregate items are multidimensional rectangular parallelepipeds,
or a range of values for each of the total d dimensions, which we will denote
throughout the paper as hyperboxes. In one dimension, a hyperbox is a range
of points, or a finite extension of a single point, which is a line segment. In
two dimensions, a hyperbox is a range of lines, or a finite extension of a sin-
gle line segment, which is a rectangle. We continue this process of extending
lower-dimensional hyperboxes in order to generate hyperboxes of unlimited di-
mensionality as shown in figure 2.

Visualization of hyperboxes is a researched topic and there already exist meth-
ods that project them into two-dimensional screen space without loss of accurate



5

Fig. 2. We show representations of three-
dimensional (left) and four-dimensional
(right) hyperboxes within star coordinates.
The red points (top) are the corners of the
hyperboxes. We visualize the hyperboxes
by filling in the convex hull of the cor-
ners with a color, in this case gray. By ex-
tending lower-dimensional hyperboxes to
higher dimensions (bottom) we can vi-
sualize hyperboxes of unlimited possible
dimensionality.

representation. The significant characteristic we wish to emphasize at this point
is that multidimensional R-trees generate aggregate items which are explicitly
defined in d-dimensional space as well as visualizable in two-dimensional space.

These hyperboxes are accurately representative aggregate items for visualizing
internal levels of a hierarchical data structure. The hyperboxes denote where the
children of their respective nodes are as well as how sparse or dense the elements
within that hyperbox are, due to their bounding properties. These characteristics
allow the user to draw conclusions about what values within the dimensions of
the data are most common as well as how varied the dimensional values are
in comparison with each other. Because many hyperboxes may be visualized at
once, the user can also compare these densities and dimensional correlations with
those of other hyperboxes, and thus quickly select a region of interest.

4.3 Efficiency for Real-Time Interaction

It is crucial for our application to interactively operate on datasets that are not
only large in quantity of elements, but large in dimensionality as well; therefore,
generation, queries, and refinement operations must be low in computational
complexity. The use of R-trees allows us to execute hierarchical generation and
interactive operations very quickly, even with large datasets of many dimensions.

The “bottom-up” generation of R-trees allows them to continuously main-
tain balance, which in turn provides a great deal of efficiency. Every time a
node is split, its children are distributed amongst the new nodes in order to
maintain the same depth throughout the R-tree and avoid empty nodes. This
property allows for insertions, deletions, and searches to be made in worst-case
O(md logm n) time for n data elements of d dimensions. Our proposed method
to execute queries requires even less time than searches, as we will explain in
detail in section 6.2. This method for generation of a hierarchy improves upon
Linsen’s [6], which does not maintain tree balance and generates many empty
nodes. Furthermore, while Linsen’s [6] method applies a more accurate auto-
matic generation of clusters, it necessitates specification of a density function
and introduction of another preprocessing step to evaluate densities and quanti-



6 Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

ties of clusters. By taking advantage of R-trees as inherently balanced trees and
therefore efficiently alterable data structures, we avoid much of the problems of
efficiency encountered in other hierarchical generation schemes.

5 Visualization of Datasets within R-trees

The visualization of massive multidimensional datasets as organized within R-
trees requires a transformation from the d dimensions of the R-tree data into
the two dimensions available on screen space, as well as effective methods of
visualizing both aggregate items and individual data elements.

We examined and implemented two alternative coordinate systems for mul-
tidimensional visualization. We show that R-trees are visualizable using an ex-
isting method, hierarchical parallel coordinates, as well as using a method which
builds upon Kandogan’s [4], Linsen’s [6] and Fua’s [5] research, a new technique
for hierarchical star coordinates. In both cases, we describe how to represent
multidimensional data elements as well as bounding hyperboxes.

5.1 Hierarchical Parallel Coordinates

Visualization of elements in hierarchical parallel coordinates was defined by In-
selberg [3], and has been extended to represent multidimensional value ranges,
hyperboxes, by Fua [5]. In parallel coordinates, each dimension is denoted by a
single line such that all lines are unique and parallel to each other, and points are
represented as polygonal lines with values plotted on each respective dimensional
line. To represent hyperboxes, we simply plot two data elements in this fashion,
the maximum and minimum, and fill the area between both segments, so that
we attain a polygon which covers all values within the range of the hyperbox.

5.2 Hierarchical Star Coordinates

For single elements within star coordinates, the technique is, again, explicitly
defined [4], and we propose extending this idea to also represent hyperboxes, as
Fua [5] did with parallel coordinates. The dimensional axes are represented by a
set of lines which all emanate from a single point (the star coordinate origin).
The data elements in star coordinates can either be represented as a polygonal
line which connects dimensional values, or as a single point which is translated in
the direction of each dimensional line by the magnitude of the value. We use the
latter. In order to represent the hyperboxes, we cannot simply plot the minima
and maxima of the range as with parallel coordinates, because the area between
the minimum point and maximum point no longer accurately represents the
range. Instead we introduce a method that plots all possible combinations of the
minimum and maximum values in each dimension–the corners of the hyperbox–
and fills the area between those points. This gives us 2D points, and we fill the
area by calculating the convex hull of these points and constructing its respective
convex polygon. This process is illustrated in figure 2.



7

6 Interactive Operations for Visualization and Analysis

6.1 Refinement Methods for Dynamic Removal of Clutter

The fact that R-trees are an LOD-hierarchy allows for several methods to remove
clutter, both programmatically and interactively. Clutter is defined as the ratio
of LOD to available screen resolution; thus, LOD corresponds directly to the
amount of clutter in the visualization. In an LOD-hierarchy, it is possible to refine
down the hierarchy and therefore alter the LOD of the visualization dynamically.
Dynamic alteration of LODs, in turn, allows for dynamic removal of clutter.

To be more explicit, refinement means breaking down certain regions within
the R-tree into their more detailed components. During traversal the actual pro-
cess of refining a node within the R-tree involves simply removing its respective
hyperbox from the visualization and replacing it with the hyperboxes or data
elements of its children. This provides us with a more accurate visualization,
albeit with more elements to visualize on screen space.

Refinement can occur uniformly or non-uniformly as well as programmati-
cally or interactively, with different benefits for each. By giving the user control
over which refinement methods are used as well as to what extent they are used,
we achieve dynamic alteration of LODs.

Uniform Programmatic We introduce one uniform programmatic method
for refinement: a simple breadth-first search (BFS). The first iteration of the
BFS algorithm applied to the R-tree returns the root, which is represented by
a hyperbox that bounds all the lower hyperboxes and therefore all the data.
The next iteration returns the m nodes that constitute the second level of the
hierarchy, the third returns theM2 nodes of the third level, and so on. In this way,
it is possible to alter the LOD uniformly–all elements visualized have the same
LOD at all times. This method is beneficial when little is known about the data–
the user can draw conclusions about the dataset as a whole and determine which
areas are more of interest than others. When the user determines a region within
the dataset that is particularly of interest, the ability to refine non-uniformly and
interactively becomes crucial.

Non-uniform Interactive To facilitate interactive as well as non-uniform re-
finement, we introduce methods for region-of-interest (ROI) refinement. The user
may construct a query and refine all nodes of the R-tree that are returned by
that query. The queries themselves can operate with any number of the avail-
able dimensions as specified, which facilitates prioritizing certain dimensions over
others as well as certain values within those dimensions over others (explained
in detail in the next subsection). In this way, the user can increase the LODs of
nodes within an ROI while maintaining lower LODs for nodes that are of less
interest. The lower LODs contribute less to clutter, and more screen space is
available for the ROI.



8 Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

6.2 Queries

The user may construct and execute two types of queries on the R-tree: 1)
bounded and 2) overlap. Both query methods iterate over nodes of the R-tree and
execute comparisons between the constructed query and each node processed.
Both also require the same input: a set of 3-tuples, which each specify 1) a
dimensional index, from 1 to d inclusively, 2) a value within that dimension, and
3) a margin value. The two types of queries differ in the implementation of these
comparisons and the provided semantic benefit.

Bounded Queries Bounded queries find nodes whose hyperboxes completely
encompass the query. The implemented comparison tests whether the node hy-
perbox completely bounds the values and their respective margins within the
dimensions specified by the user.

This type of query facilitates interactive searching for programmatically gen-
erated clusters of data. Because they test for nodes that completely encompass
the query region, this is an effective way for the user to find specific bounded
clusters. If the query returns true for a node within the R-tree, that query is
accurately represented by a hyperbox in the R-tree. In this way the user can find
which bounded clusters of data were generated by the R-tree processing and
subsequent node-splitting operations. In other words, it is a way for the user
to query based on the programmatic clustering of data that occurs during the
R-tree generation.

Overlap Queries Overlap queries find all nodes which encompass any part,
rather than all parts, of the query. The comparison tests whether any of the
specified dimensional value/margin pairs overlap in the same dimension as the
value/margin pairs of the hyperbox of the processed node.

Whereas bounded queries allow searching for programmatically generated
clusters, overlap queries allow searching for any data within the specified range.
This technique is useful for drawing conclusions about the data regardless of
the internal R-tree structure, and therefore is based on the data elements rather
than the data structure.

7 Visual and Interactive Data Exploration and Analysis

7.1 Isolating Outliers

Commonly, real datasets contain outliers. Whether they are errors of the measur-
ing instruments used or exceptional cases within the data, it is essential in visual
data analysis to isolate and either extract more detail from or eliminate these
outliers. With our system, it is possible to discover outliers quickly and either
decrease their significance or refine them in order to examine them more closely.
We explain the process by example: discovering outliers in a commonly analyzed
dataset of regional wines [8], which has 13 dimensions and 178 elements.



9

First, we choose a value for m. As 178 elements is a fairly small number of
data, we choose a small value for m, 2, in order to increase LODs available. Next,
we execute BFS refinements to draw initial conclusions about where outliers may
lie. From this step, we can see distributions of values in each dimension. Some are
densely packed around certain values, like dimension 10 and dimension 5. The
outliers in each dimension are those values which lie outside of the densely packed
regions; there are fewer generated aggregate items for them, which indicates that
there is less data within them. In order to show the efficacy of removal as well
as examination, we remove the outliers in dimension 5 and examine in detail the
outliers of dimension 10.

Fig. 3. We color visualized hyperboxes in parallel coordinates (left) and star coor-
dinates (right). By increasing the LOD of a large hyperbox containing sparsely dis-
tributed data, we obtained detail of a small hyperbox (at the end of the axis numbered
10) within that region containing densely distributed data (the small red hyperbox).

In order to remove an outlier, we simply use the background color as our
query color, in this case white, and construct a query which contains the region
of outliers. As explained in section 6, when we are looking for specific elements,
like outliers, overlap queries are more effective. After running the overlap query,
the outliers in dimension 5 barely contribute to the visualizations.

We operate similarly to examine the outliers in dimension 10. Instead of the
background color, we choose an appropriate color that will “stand out and ex-
ecute an overlap query followed by a number of overlap refinement operations
until we obtain the LOD required. After just a few overlap refines, we achieve a
very specific outlying region visualized in both the parallel coordinates and star
coordinates, while avoiding clutter due to the region-specific refinement opera-
tions. We can then begin correlational analysis, as explained in the next section.



10 Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

7.2 Examining Correlations

Fig. 4. We show hyperboxes as colored regions in parallel coordinates (left) and star co-
ordinates (right) for a dataset of forest fires. Each numbered line in the star coordinate
visualization corresponds to a dimension. These numbered lines can be manipulated in
direction and length. If we extrude the line numbered 11, the red hyperbox is extruded
more than any other hyperboxes. Therefore, the red hyperbox contains data with a
high range of values in dimension 11.

We can examine correlations between dimensions and between individual
clusters and elements by performing refinement operations until we achieve the
desired LOD in a ROI, and arranging the visualization to show correlations.
Again, we explain the process by example, but this time with a dataset of doc-
umented forest fires within the northeast region of Portugal [9].

Again, we first choose a number for m, in this case 3 suffices, and execute
a number of BFS refinements to obtain initial overviews of the data. As we
determine a good ROI, we may begin rearranging the visualization methods in
order to analyze correlations. After 2 BFS refinements, we rearrange the parallel
coordinate axes to observe dimensional correlations: high values in dimension 4
correlate with low values of dimensions 11 and 12. We can more appropriately
observe correlations between aggregates or elements in the star coordinate visual-
ization. We increase the magnitude and vary the direction of certain dimensions,
in this case 4, 7, 11, and 12, shown in figure 7.2. Because we can manipulate
these axes interactively, we can also observe to what extent the shape of the
aggregates is affected. The blue aggregates are fairly unaffected by manipulation
of the axis that represents dimension 11, which means these aggregates have
fairly low values in dimension 11. In contrast, the blue aggregates are strongly
affected by manipulation of the axis that represents dimension 4, so the data has
high values in this dimension. By analyzing the hyperbox shapes, we can draw



11

further analysis of distribution of values. Very sparse distributions of data can
be observed in red, where there is only one aggregate item that is large in visual
area, whereas very dense distributions can be observed in blue, where there are
many small aggregates and data elements. We conclude that a large quantity
of the data has fairly high values in dimension 4 and extremely low values in
dimension 11.

8 Drawbacks

One principal drawback to using R-trees is that the hierarchical clusters are gen-
erated solely based on proximity, and different clusters are generated when the
data is inserted in different orders. The hierarchical clusters are not as accurate
as those created with Linsen’s [6] or Fua’s [5] implementations.

A major drawback of our hyperbox visualization method is that it requires
O(2d) complexity to calculate the hyperbox corners. The effects are rather detri-
mental for visualization of 20 or more dimensions, so improved methods would
be necessary to provide real-time visualizations at this level of dimensionality.
Note that this complexity applies to the visualization, rather than the interactive
operations.

We discuss possible improvements to these drawbacks in the next section.

9 Conclusions and Possible Future Research

We have implemented and built upon several existing methods for multidimen-
sional visualization and visualizable hierarchical structuring of multidimensional
datasets. We have introduced a novel method to generate an efficient LOD-
hierarchy for large, multidimensional datasets using R-trees, we have examined
methods to visualize hyperboxes and elements within that LOD-hierarchy, and
we have examined the use of interactive operations on the data to facilitate
analysis. We have used existing visualization schemes, parallel and star coordi-
nates, in order to introduce a new method for visualizing hyperboxes, while re-
taining the ability to use existing visualization methods as well. Our method for
LOD-hierarchy generation provides a great deal of efficiency and functionality in
contrast to previous ones, and in combination with the introduced visualization
schemes and interactive operations, added benefits for analysis and exploration
of data.

A possible improvement to the drawback of complexity mentioned in section 8
could be to apply Linsen’s [6] splat-based ray-tracing method to these hyperboxes,
in which case the complexity would be constrained by screen resolution, rather
than the data dimensionality. Another possible improvement, for more accurate
hierarchical cluster generation, could be to develop new node-splitting algorithms
based on factors other than proximity.

Future implementations of our method could significantly influence areas
which use progressive refinement, such as Rosenbaum’s [10] technique for device



12 Alfredo Giménez, René Rosenbaum, Mario Hlawitschka, and Bernd Hamann

adaptation or Painter’s [11] technique for anti-aliased ray-tracing. As progres-
sive refinement methods require generation of LOD-hierarchies for many types
and sizes of multidimensional data, our method provides much of the necessary
functionality.

10 Acknowledgements

René Rosenbaum was supported by the German Research Foundation Deutsche
Forschungsgesellschaft (DFG), and Mario Hlawitschka was supported in part by
NSF grant CCF-0702817. We thank our colleagues from the Institute of Data
Analysis and Visualization (IDAV) at UC Davis.

References

1. Chernoff, H.: The use of faces to represent points in k-dimensional space graphi-
cally. Journal of the American Statistical Association 68 (1973) 361–368

2. Wright, D.B.: Scatterplot matrices. Encyclopedia of Statistics in Behavioral Sci-
ence 4 (2005) 1794–1795

3. Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1 (1985)
69–91

4. Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using
star coordinates. In: Proceedings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining. KDD ’01, New York, NY, USA,
ACM (2001) 107–116

5. Fua, Y.H., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for
exploration of large datasets. In: Proceedings of the conference on Visualization ’99:
celebrating ten years. VIS ’99, Los Alamitos, CA, USA, IEEE Computer Society
Press (1999) 43–50

6. Linsen, L., Long, T.V., Rosenthal, P., Rosswog, S.: Surface extraction from multi-
field particle volume data using multi-dimensional cluster visualization. IEEE
Transactions on Visualization and Computer Graphics 14 (2008) 1483–1490

7. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: IN-
TERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, ACM (1984)
47–57

8. Forina, M.: An extendible package for data exploration, classification and correla-
tion (2010)

9. Cortez, P., Morais, A.: A data mining approach to predict forest fires using mete-
orological data. In: Proceedings of the 13th EPIA 2007 - Portuguese Conference
on Artificial Intelligence. (2007)

10. Rosenbaum, R., Hamann, B.: Progressive presentation of large hierarchies using
treemaps. In: ISVC ’09: Proceedings of the 5th International Symposium on Ad-
vances in Visual Computing, Berlin, Heidelberg, Springer-Verlag (2009) 71–80

11. Painter, J., Sloan, K.: Antialiased ray tracing by adaptive progressive refinement.
In: Proceedings of the 16th annual conference on Computer graphics and interactive
techniques. SIGGRAPH ’89, New York, NY, USA, ACM (1989) 281–288


