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Abstract. This paper concerns the use of compression methods applied to large scientific
data. Specifically the paper addresses the e↵ect of lossy compression on approximation
error. Computer simulations, experiments and imaging technologies generate terabyte-scale
datasets making necessary new approaches for compression coupled with data analysis. Lossless
compression techniques compress data with no loss of information, but they generally do not
produce a large-enough reduction when compared to lossy compression methods. Lossy multi-
resolution compression techniques make it possible to compress large datasets significantly
with small numerical error, preserving coherent features and statistical properties needed for
analysis. Lossy data compression reduces I/O data transfer cost and makes it possible to
store more data at higher temporal resolution. We present results obtained with lossy multi-
resolution compression, with a focus on astrophysics datasets. Our results confirm that lossy
data compression is capable of preserving data characteristics very well, even at extremely high
degrees of compression.

1. Introduction
The scientific datasets generated today via computer simulations are too large for direct
processing and analysis. E↵ective and e�cient methods are becoming increasingly important
to compress datasets, keeping in mind the need to preserve relevant scientific behavior in
compressed representations as much as possible. Processing extraordinarily large datasets
exposes limitations in current hardware, making data analysis challenging. As more powerful
computer and imaging systems are being developed, these challenges grow exponentially.
Currently, processing such large datasets introduces massive strain on data transfer and storage
systems. On the observational side, one massive-dataset-generating system is the Large Synoptic
Survey Telescope (LSST), a wide-field survey telescope currently under construction [1]. It
is estimated to produce hundreds of gigabytes of raw data per night. Regarding computer
simulations, the AMReX/Nyx computational cosmology code produces massive N-body and gas
dynamics simulation outputs consisting of hundreds of terabytes of data for a typical large-scale
run [2].

For these two specific applications, transferring and processing raw data creates many
challenges as network and I/O (input/output) systems are strained. Previous e↵orts have
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Figure 1. Compression and decompression pipeline.
Simplified pipeline shows data products (green), compression (red), and decompression (blue)

operations.

utilized mainly lossless data compressors to reduce data size in memory before conducting I/O
operations but they have generally not achieved significant data reduction [3]. Both transferring
data between on-site systems and sharing data for collaborative research imposes significant
bottlenecks, making adaptive lossy data reduction methods more viable. These benefits have
been demonstrated in domains with similar data properties, such as simulations of turbulence,
enabling collaborative remote visualization [4]. The consensus is that lossless compression
methods are unable to reduce massive datasets su�ciently to o↵set I/O and memory bottlenecks.

As lossy methods have become necessary with the presented data challenge, it is important
to understand the errors introduced by lossy data reduction for varying degrees of compression.
We introduce a lossy multi-resolution compression framework and provide quantitative and
qualitative results concerning error for regular-grid datasets, specifically for cosmology and
astronomical image datasets.

2. Method
Lossy data compression can be achieved by selecting a wavelet basis, performing a data
decomposition, then removing the lowest-magnitude coe�cients via hard thresholding. This
selection process can be either done with a predictive model or by sorting the coe�cients. A
hard threshold operation is performed by setting-to-zero those values that are below a certain
coe�cient magnitude, e↵ectively throwing them away. The resulting coe�cients are followed
up by an encoding process to achieve additional amounts of data reduction by establishing
several levels of numerical precision and applying dictionary-based methods for packaging.
Decompression is a much simpler operation that simply decodes the data stream and reconstructs
the remaining set of wavelet coe�cients. Fig. 1 describes the complete compression and
decompression pipeline.

2.1. Algorithms

It is possible to achieve high degrees of data reduction through discrete wavelet sampling.
Wavelets are a generalization of the Fourier transform by using a basis that represents both
location and spatial frequency [5]. A typical wavelet representation contains several vanishing
moments that makes possible a sparse and highly accurate representation via dataset-sampling
based on a small number of coe�cients. The underlying basis functions support a discrete
representation of a continuous signal, designed to produce responses for di↵erent frequencies.
When applying a wavelet basis to a dataset, the result is a set of coe�cients for that basis



XXX IUPAP Conference on Computational Physics
IOP Conf. Series: Journal of Physics: Conf. Series 1290 (2019) 012008

IOP Publishing
doi:10.1088/1742-6596/1290/1/012008

3

function, capturing behavior at various resolutions. Wavelets that are commonly used include
Haar wavelets, Daubechies wavelets, bi-orthogonal spline wavelets, and coiflet wavelets.

Pulido et al. [6] analyzed and compared in great detail many multi-resolution representation
methods in the context of feature extraction and data analysis. Among those tested, higher-
order B-spline wavelets were the most e↵ective in terms of the ability to capture a broad range
of quantities relevant for the representation of turbulence structures with a reduced set of
coe�cients. When viewing these results in the context of regular-grid and continuous datasets,
the higher-order B-spline wavelet families consistently scored near the top of the compression
schemes considered; therefore, biorthogonal cubic B-spline wavelets [7] were used for generating
the results presented in this paper.

Figure 2. Absolute magnitude coe�cient distribution.
An exponential decay behavior describes the relationship between coe�cient magnitudes and

number of coe�cients. A small number of high-magnitude coe�cients holding the most
entropy can be kept while many small-valued coe�cients can be removed to achieve e↵ective

data reduction.

Once a cubic B-spline wavelet signal is sampled via a regular-grid dataset, wavelet coe�cients
are produced using a dimension-by-dimension approach, i.e., in one step only one dimension is
considered for the computation of coe�cients. Although this method takes advantage of and
is designed for regular structured grids, it can handle non-regular grids and simulated particle
data by treating the data as a single, one-dimensional data stream. To preserve the most
relevant features during lossy compression, one must keep coe�cients with highest magnitudes
and discard those with relatively very low magnitude. Datasets in many scientific domains
produce a distribution of coe�cients, i.e., a distribution of coe�cients by magnitude, where the
number of coe�cients decreases as coe�cient magnitude increases. This distribution can be
modeled with an exponentially decreasing function, see Figure 2. Considering this behavior,
a value for hard-thresholding must be selected. This can either be done by using a parallel
quick-sort algorithm applied to the absolute magnitudes of the coe�cients to select an exact
value, or a predictive model for approximation for an understood specific scientific application.

When using a predictive model for approximation, significant time can be saved during
compression by avoiding an expensive sorting step. By providing minimum, maximum and
target compression values (% of coe�cients or compression ratio), this model can be adjusted
on-the-fly per application domain.

As final encoding step we perform data re-quantization and use an o↵-the-shelf dictionary
compressor for packaging, e.g., LZ4 [8]. Wavelet coe�cients are derived as floating-point,
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Figure 3. Cosmology and Astronomy features of interest.
3D-grid cosmology simulation showing baryon density volume (left) demonstrates clearly
defined density clusters and interconnects to preserve during compression. A 2D-image

sky-survey simulation (right) presents elliptical bright objects as stars and galaxies, combined
with simulated noise.

numerical values – presenting an additional challenge when data is converted from an
integer (astronomical images) to floating-point format. Traditionally, integer values lead to
higher degrees of compression than floating-point values when using dictionary-based lossless
compressors. By using floating-point-to-integer re-quantization, it is possible to preserve the
majority of a wavelet coe�cient’s entropy at the cost of a small reduction in numerical precision.
This is achieved by selecting a fixed number of significant digits and preserving them during the
conversion to integer numerical space.

Decompression requires significantly less e↵ort compared to compression. To retrieve
compressed data, a file is decoded, re-quantized back to floating-point precision and
reconstructed using a wavelet signal. A lossy representation of the original data is then retrieved.

2.2. Features and Implementation

Using wavelet-based methods provides several benefits such as de-noising, region-specific
reconstruction (decompression), data streaming, and coe�cient-space data analysis capability,
without the need of full decompression. The primary component of this compressor uses a
wavelet CPU implementation based on a heavily modified version of the GNU Scientific Library
(GSL) [9]. Modifications were applied to the open-source library, including: support for 3D/N-
D data, support for non-square and non-powers-of-two resolution data, higher-order B-spline
basis function support, handling of boundary conditions, and parallel computation. An early
open-source implementation of this compression code in both C++ and Matlab is available,
see [10].
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3. Results
3.1. Multi-dimensional Cosmology

The lead Nyx Lyman-alpha simulation significantly furthers the state-of-the-art in the field,
using as many as 81923 grid cells. The simulation discussed in this paper for compression
is a smaller, test simulation with 5123 cells with six scalar components. The only di↵erence
between the lead and the test simulation is the physical size, which is 250 megaparsecs (Mpc)
for the 81923 run and 15.625 Mpc for the smaller test case. The smaller simulation has the
same physical resolution as the original, performed with the same physics and using the same
choice of cosmological parameters: h = 0.675, ⌦m = 0.31, ⌦⇤ = 0.69, ⌦b = 0.0487, �8 = 0.82,
ns = 0.965, and wde = �1.0.

The parallel, shared memory version of this compressor was tested on Intel’s Haswell and
Xeon Phi (KNL) architectures on Cori (NERSC, Lawrence Berkeley National Laboratory) to
determine scaling performance. The two datasets have the same physical simulation box, but
they vary in cell resolutions. For a physical grid size of 5123, we found that a single Haswell
node with 64 threads completes the main wavelet decomposition in 1.594 seconds on average, for
a single scalar field of 512MB size. When using a resolution of 20483, the same routine requires
59.653 seconds on average for completetion, for a single scalar field of 32GB size. A single KNL
node with 256 threads processes the 5123 physical box in 2.334 seconds and a 20483 resolution
in 88.491 seconds on average. These performance results are preliminary results, as it is still
possible to further optimize our implementation.

Figure 4. PSNR behavior on lossy compression.
PNSR comparisons show compression behavior across the six scalar fields; densities

compressing the best compared to velocities. An inflection point is reached between 5%-7%
with diminishing returns in quality. Velocity components compress similarly with a small

positive bias in the y-axis.

Figure 4 shows the compression capabilities of the method, demonstrating a high degree
of control over the quality of a lossy compression. Using the 5123 dataset to represent the
initial physical simulation box size, the peak-signal-to-noise (PSNR) plot shows the relative
compression quality for each scalar component. Baryon density can be compressed the most,
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while velocity components can be compressed the least. The y-direction velocity component can
be compressed slightly more than the x- and z-directions. This fact could be the result of the
specific initial conditions used in the simulation.

The same PSNR plot shows that generally all velocity components contain the same amount
of error when compressed. The most important factor to consider is the observed inflection
point that occurs for thresholding around 5-7 % coe�cients (20:1 - 15:1 compression ratios).
The inflection point generally signifies a “point of compromise”; using more coe�cients for
compression would only yield diminishing returns in quality. Therefore, 20:1 to 15:1 compression
ratios are recommended for this specific cosmological dataset.

Figure 5 shows the progression from 1%, to 5%, and eventually 10% coe�cients by rendering
contours for dark matter density (logarithmic scale). For reference, a 10% visualization is
“visually identical” to the original data. In our numerical results, compression degrees between
5% and 10% represent the inflection point. Visually, there is very little change from the latter
two. By using 1% coe�cients for compression (100:1), we see a deterioration of the contours in
high-density regions.

Figure 6 shows the e↵ect of di↵erent compression levels for the power spectra of dark matter
density (left panel) and gas density (right panel). We see that the power spectra are in excellent
agreement, especially considering that there is little cosmological interest in the k > 10Mpc�1

h

regime. In particular, we observe that compression works extraordinarily well on baryon (gas)
density. This is a physical explanation: Dark matter is pressure-less, thus forming a structure
even on the smallest scales resolvable in a simulation. Gas, on the other hand, is described
by the Euler equations, and is pressure-smoothed, with the smoothing scale depending on gas
temperature. For this reason, density fluctuations are filtered on scales of a few cells, suppressing
small structures and enabling a high degree of compression.

3.2. Astronomical Images

The LSST dataset [11] is a simulated image dataset that attempts to emulate observational
features of the actual telescope, the LSST. Using GalSim, the lens properties and other
characteristics of the telescope can be simulated to produce expected outputs for the future
observational datasets. The sample set of FITS files are of size 4000 x 4000 containing several
frequency bands. For sky survey simulations, noise is typically added to replicate characteristics
of the actual telescope. Each pixel in an image represents about 0.2” of physical space, i.e., a
single image represents up to 800” x 800” or 0.05 square degree depth of coverage.

As a pre-processing step, a grid-based de-noising scheme is used to remove the obvious
observable artifacts, where otherwise a stacking the 2D image set would already remove them.
Data compression and object detection can then be performed for this data.

Section 2.1 discusses the possibility of using alternative lossless compression schemes to encode
coe�cients of basis functions. To explore this issue, Figure 7 compares the use of stand-alone
lossless compression and combinations of lossy compression with the methods we have introduced
in this paper. We examine the use of traditional used Gzip [12] in standard FITS file compression,
LZ4 [8], and BZip2 [13] as stand-alone compressors. Typically, computation times for a FITS
file of this size vary from a few seconds to tens of seconds. When sorting methods from fastest to
slowest, one obtains the following order: LZ4, GZIP, Wavelets with LZ4, Wavelets with BZip2,
and BZip2.

In summary, we can employ lossy compression by preserving up to 50% wavelet coe�cients
and combine it with Bzip2 encoding to achieve file sizes as low as 9.8% of the original size.
This result compares favorably relative to using stand-alone methods such as LZ4 (28%), Gzip
(23.5%), and BZip2 (14.9%). More extreme levels of compression can be achieved by reducing
the percentage of coe�cients preserved, at the cost of numerical precision. Ideally, we would like
to take advantage of fast decompression by pairing wavelets and LZ4, still producing compression
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Figure 5. Dark matter density contour visualization comparisons.
Visual iso-contour structures can be compared at various compression levels. Left to Right:
1%, 5%, 10% coe�cients. Areas of high-density clustering and general web-like structures are

well preserved at high levels of compression. At extreme compression (1%), the web-like
structure begins to deteriorate slightly.

sizes smaller than that obtained with traditional standalone Gzip. The choice of percentage of
coe�cients has the most impact on lossy compression quality.

A highly e↵ective method for object detection by Zheng et al. [14] is used to evaluate the
quality of lossy compression and object detection at various levels. In the original data, a total
of 401 objects can be extracted with this method on a 64MB FITS container. By only using less
than half of the wavelet coe�cients (40%), it is possible to preserve at best 98% of the originally
detected objects, with only 9.5% of the original file size. At more extreme levels, 90% object
detection is still achievable when using only 15% of coe�cients, e↵ectively reducing the file size
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Figure 6. Nyx relative power spectra for di↵erent compression levels.
Dark matter density (left) shows well-preserved energy ranges across all levels up to 10x
compression, and low-power behavior up to 100x. Baryon density (right) shows excellent

preservation even at extreme 100x compression.

Figure 7. Comparison between compression methods.
The dotted green lines show file sizes using three standard lossless compression methods while
the others are lossy with wavelets (Q32). When lossy compression is used, data sizes can be

significantly reduced by several magnitudes more.

to 5% of the original, see Figure 8 and Figure 9.
Figure 9 shows a comparison of the magnitudes of detected objects (”R mag” in LSST

catalog) for all ranges. These results show that compression at extreme levels a↵ects the
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Figure 8. Object detection.
Trends in object detection show that using as little as 40% coe�cients preserves over 98% of
detected objects. Using an extreme data reduction that targets a 5% relative file size to the

original, choosing to keep 15% coe�cients can preserve 90% of detected objects.

Figure 9. R mag accuracy.
Coe�cients by 1% (yellow), 10% (cyan), 50% (orange), and original (blue) show binned

distributions of detected objects. A polynomial fit shows that bright and large objects are
preserved well even at extreme compression percentages while smaller, usually fainter objects

are lost.

detection of R mag values representative of typically small objects. This result is consistent
with reduced numerical precision, but it achieves better performance through the use of wavelets.
Considering the representation with 50% coe�cients, the R mag ranges are nearly consistent
with the originally detected objects, and even when using a representation with only 10%
coe�cients most properties are preserved.
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4. Conclusions
We have demonstrated the capabilities of a lossy data compression approach and implementation
for workflows arising in cosmology and astrophysics. Large degrees of data reduction are
possible with the approach, without significantly compromising domain-specific features relevant
for specific applications. For regular-grid astrophysics datasets, clustered density features are
visually and numerically preserved, even at high levels of compression. Considering astronomical
images, a majority of objects can still be detected and properly characterized even when high
degrees of data reduction have been used.

We plan to conduct memory usage optimization tests for in-situ applications, where
compression methods must be performed within a severely limited computation budget. The
presented compression scheme is capable of performing temporal compression for 3D stacked
image data or 4D simulated data. In order to better evaluate the computational capabilities of
the compression approach, we need to perform strong and weak scaling tests, since computer
systems are becoming increasingly parallel, and homogeneous architectures allow us to use both
CPUs and GPUs for greatly accelerated computations.
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