Flow-Based Ocean Reconstructions from Sparse Observations

Gregory J. Streletz[1], Geoffrey Gebbie[2], Bernd Hamann[3], Oliver Kreylos[3], Louise H. Kellogg[3], and Howard J. Spero[1]

(1) University of California, Davis, CA 95616 USA (2) Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA

Introduction

• Problem: high-quality, physically more accurate reconstructions from sparse data
• Data: measurements from benthic foraminifera in deep sea sedimentary cores (e.g., the data compiled by Marchal & Curry [1], shown below, or by Peterson, Lisiecki, & Stern [2])
• Solution: a flow-based reconstruction method useful for interpolating or approximating sparse scattered data in the presence of a flow field
• Insight: exploit correlations between ocean flow and quantities such as δ¹³C in order to enhance reconstruction quality

Methods

Non-Euclidean Distance Measures

• Use non-Euclidean distance measures to exploit knowledge of flow
• Use a parameter α to assign a relative weight to distances along streamlines (the green distances in the figure to the right) versus distances across streamlines
• The distance function illustrated in the middle plot below weights distances across streamlines highly in comparison to distances along streamlines; the distance function on the right is the standard Euclidean distance

Results

• 2D implementation of our flow-based reconstruction method tested using:
 • simple analytic test cases
 • simulated 2D flow data
• 2D version applied to observed ocean data mapped to longitudinal planes
• 3D version of the method also has been implemented and used to create 3D reconstructions of sparse ocean observations such as those in [1] and [2]

Advection-Diffusion Model Test Cases

• Simulated 2D flow data created through use of a discretized advection-diffusion model
• The plots below illustrate two such test cases, for two different values of diffusivity

Parameter Optimization

• Cross validation between the various samples used to define an objective function to be optimized
• Can then automatically find near-optimal values of parameters such as α
• Plot shows RMS error surface and the corresponding optimizations of α for given correlation lengths (green markers) and simultaneous optimization of correlation length and α (red marker)

Extrapolation

• Implemented an extrapolation procedure to mitigate the effect of extrapolation near domain boundaries seen in the previous reconstruction
• Procedure:
 • compute convex hull around the samples (plot on left below)
 • linearly extrapolate data to the domain boundaries
 • re-run flow based reconstruction method with a collection of boundary points added to the original set of sample points
• Note the reduction in extrapolation artifacts in the reconstruction below (right) as compared to the original reconstruction

Water Mass Boundaries

• Our flow-based reconstruction method has desirable properties regarding reconstructions at water mass boundaries
• Shape of boundary of test case (left) is represented more accurately using our method (right) than by using OI only (middle)

Future Work

• Currently testing the 3D implementation of the flow-based reconstruction method
• Plan to use it to perform studies in which dense ocean data (observations of the modern ocean, computational simulations of past oceans) are sampled at various levels of sparseness and then reconstructed using our method, enabling assessment of performance of our method via a direct comparison with data

References