Remote GPU-Accelerated Online Pre-processing of Raster Maps for Terrain Rendering

Rolf Westerteiger∗, Fang Chen∗, Andreas Gerndt∗, Bernd Hamann†, Hans Hagen∗.

∗ German Aerospace Center
Lilienthalplatz 7
38108 Braunschweig
Germany
firstname.lastname@dlr.de

† UC Davis
Dept. of Computer Science
Gottlieb-Daimler-Strasse
Davis, CA 95616-8562 (USA)
hamann@cs.ucdavis.edu

⋆ TU Kaiserslautern
36763 Kaiserslautern
Gottlieb-Daimler-Strasse
Germany
hagen@informatik.uni-kl.de

Abstract: We present a distributed architecture for accelerated pre-processing of remote sensing data for immediate terrain visualization. Interactive 3D visualization approaches for large terrain datasets employ level of detail techniques that require a multi-resolution data representation. The high computational cost of constructing these representations is often not viewed as a major drawback, as it is considered an off-line pre-processing step. This prevents the application of existing methods in the case of changing data, which is becoming increasingly important for a multitude of applications where datasets are being generated, transmitted and must be visualized immediately, such as in disaster management. Our system uses graphics processing units (GPUs) to accelerate the process of generating a multi-resolution representation, achieving sufficient performance to enable on-line visualization on a front-end workstation communicating with a back-end cluster of machines equipped with GPUs. As a reference data structure, we use a quad tree decomposition of the so-called HEALPix sphere parameterization, which is well-suited for spherical terrain rendering. Our system correctly handles overlapping and unregistered mixed-resolution datasets. We demonstrate the efficacy of our approach by applying it to the surface of Mars using both the NASA Mars Orbiter Laser Altimeter and the ESA Mars Express High Resolution Stereo Camera datasets.

Keywords: terrain rendering, dynamic terrain, digital terrain models, multi-resolution data structures, map projections, distributed pre-processing, GPGPU

1 Introduction

Interactive three-dimensional terrain visualization has become accessible to a wide audience due to the development of advanced rendering algorithms which can guarantee interactivity at very high resolutions. With the emergence of inexpensive remote sensing platforms such as quadcopters, future challenges will include the integration and visualization of changing data collected from multiple sources such as situation information necessary for disaster management or public security.

Rendering algorithms typically require data to be represented using specific multi-resolution
data structures, which encode elevation models and imagery redundantly at multiple different resolution levels. The rendering algorithm typically selects a suitable level at runtime as a function of screen resolution and current view perspective. Due to the static nature of most terrain datasets, the computational effort for pre-processing remote sensing data into this format is usually not considered critical.

Our contributions are a GPU algorithm to accelerate the conversion of raster maps into a multi-resolution data structure as well as a distributed, online pre-processing framework which uses this algorithm to enable rapid visualization of raster maps within a 3D terrain visualization system. Composition of multiple, potentially overlapping mixed-resolution raster maps is performed on the fly. A quad tree hierarchy on top of the HEALPix [GHB+05] sphere tessellation was used as reference data structure. The benefit of this approach is a significant reduction in turn-around time required to visualize remote sensing data stored in standard raster formats.

For evaluation, we used both Mars Orbiter Laser Altimeter (MOLA)[SZF+01] and High Resolution Stereo Camera (HRSC)[GSP+10] datasets. The MOLA mission has provided a global Digital Elevation Model (DEM) of Mars with a resolution of 460m per pixel for a dataset size of 2.0 GiB. The HRSC datasets, which cover about 33% of the surface, include a high-resolution DEM at an average resolution of 90m per pixel (23.2 GiB) consisting of 1161 individual raster files.

Both datasets were merged into a single database using HRSC data wherever available and MOLA data to fill the gaps. This database was computed on-the-fly and visualized within an interactive spherical terrain rendering system.

2 Related work

Interactive terrain rendering is a well-established area of research. Terrain visualization systems are usually coupled to specific data structures. As computing paradigms shifted over the decades, algorithms have adapted to exploit the characteristics of the hardware of the day. Early approaches such as ROAM [DWS+97], introduced by Duchaineau et al., perform triangle-level adaptation of the rendered geometry on the CPU to minimize geometric complexity before rasterization. These strategies have become prohibitively expensive on modern hardware which provides very high rasterization bandwidth using GPUs but suffers from relatively slow CPU performance and bus bandwidths.

Due to these developments, more recent solutions try to optimize batching of the geometry by treating blocks of geometry as opaque entities which are rasterized as a whole. Levenburg’s CABTT algorithm [Lev02] extended classical triangle bin-tree algorithms by processing batches of geometry bounded by a triangular patch instead of individual triangles. These patches are uploaded to GPU memory and re-used for multiple frames to reduce CPU workload and bus traffic.

The P-BDAM algorithm [CGG+03] of Cignoni et al. uses a similar type of batching but uses adaptive triangulations within each patch, which are precomputed off-line. Spherical
rendering is realized by using curved patches. Distributed pre-processing is enabled by subdividing the surface of the sphere into block that can be processed independently.

The Geometry Clipmaps [LH04] scheme by Losasso and Hoppe uses a set of nested regular grids which decrease in resolution with increasing distance from the viewer. Temporal coherence in viewer movement is exploited by introducing a toroidal indexing schemes which allows to minimize the per-frame cost of updates on the GPU as new data is being loaded. The data structure being used to represent terrain is a pre-filtered mipmap pyramid on a regular grid.

Planetary-Scale Terrain Composition [KLJ+09] by Kooima et al. is an unconventional approach for real-time composition of unregistered raster maps which defers traditional re-sampling to the rendering phase. A mipmap representation of the data being loaded is required, however. During rendering, sphere geometry is generated on the fly using iterative subdivision of a base isocahedron. The maximum depth of this subdivision is determined by a LOD heuristic, depending on viewer position. Finally, vertices are displaced along their normals according to height values stored in the input datasets, which are uploaded to the GPU as textures.

Vertices of the triangle mesh being subdivided contain spherical coordinates as well as normals. Depending on whether an intersecting data set uses spherical or polar projection, either spherical coordinates or normals are used as texture coordinates to sample a mipmap representation of the original raster image. Mesh vertices must be displaced and colored accordingly. This texture look-up is efficient, as texture coordinates have already been computed at that point. The computation of texture coordinates, however, is computationally expensive. Due to numerical instability, the spherical coordinates can not be computed in a closed form but have to be maintained as the subdivision progresses. To generate spherical coordinates for newly interpolated vertices, the haversine geodesic midpoint method is used. This method is computationally expensive, especially considering that it has to be evaluated once for every vertex in every frame.

Our system is similar in that we re-sample any given data onto a singularity-free grid. Instead of using an implicit subdivision scheme, we apply the HEALPix [GHB+05] parametrization. HEALPix has an explicit projection formula which is computationally cheap to evaluate and maps between parameter space and spherical coordinates. This allows for independent evaluation of grid vertex positions at any refinement level, enabling highly parallel GPU based resampling. In our online preprocessing approach, this resampling is only performed once as tiles are being generated. These tiles are then cached by the front-end visualization system.

In the Crusta [BCK+11] terrain rendering system, a rhombic triacontahedron is used as base geometry, which is iteratively subdivided in a similar fashion as in [KLJ+09]. For each of the 30 base faces, a quadtree is used as a hierarchical multi-resolution representation. Each tree node stores a tile of 64×64 samples for efficient batching in rendering. Data is re-sampled onto the leaf node grid vertices in an off-line pre-processing step and inner nodes
are computed by iterative downsampling. As in [KLJ+09], the implicit subdivision scheme makes direct sample addressing computationally expensive.

In our approach we also use a quadtree on top of a sphere tessellation. However we do not use an implicit subdivision scheme to define our sampling grid. Instead, we apply the HEALPix parametrization, which uses 12 curvilinear base patches to represent the sphere. As the HEALPix scheme has an explicit projection formula, coordinate transformations can be performed independently, which makes it suitable for parallel evaluation on GPU.

Lambers et al. [LK10] have presented a system to generate view-dependent geometry on the fly to allow for visualization of fully dynamic datasets. The GPU-based per-frame generation of this triangulation is computationally expensive, however, and does not guarantee interactivity. Treib et al. [TRAW12] use a compressed wavelet representation for terrain data which is visualized at interactive rates using GPU-based ray-casting. The chosen representation allows for efficient real-time editing of terrain. A quad-tree topology is used for the multi-resolution data structure, however tree nodes contain only the (compressed) differences to their parent nodes as opposed to storing absolute height values. When the terrain is modified at a given resolution level, changes are propagated through the quadtree. To populate coarse resolution levels, the affected subtree is recomputed using a bottom-up construction process starting from the modified tiles. To propagate downwards in the tree, editing operations are recorded and applied on-the-fly to finer nodes as they are loaded into GPU memory. In our system, data being inserted into the tree is always represented as leaf nodes, hence only upward propagation is necessary. This is likewise achieved by updating the tree using iterative downsampling, starting from affected leaf nodes.

GPU algorithms have also been used for pre-processing remote sensing data. Thomas et al. described a system [TKR+08] for GPU-based orthorectification, which is a process to remove perspective distortions in imagery to produce a top-down view of uniform scale. In their approach, imagery obtained from an oblique perspective is projected in real-time onto an existing DEM to produce a corrected orthophoto using a technique related to shadow mapping. In the work presented here we assume that the input data is already available as orthophotos. In an actual crisis management scenario, one could imagine coupling both approaches to obtain a pipeline for immediate visualization of live remote sensing data.

3 Pre-processing framework

In the following we will characterize the input data used in our approach, describe the structure of the output database and present an algorithm to construct this database. Subsequently, a GPU implementation of the same algorithm is introduced which is then applied to realize an on-line pre-processing framework. Using this framework, data tiles can be generated on-the-fly by a backend GPU cluster for immediate visualization on a frontend rendering workstation.
3.1 Data representation

![HEALPix hierarchical sphere tessellation](image)

Figure 1: The HEALPix hierarchical sphere tessellation. All cells on a given subdivision level have equal area and their coordinates can be computed using a closed formula.

The input data processed in our framework are geo-referenced raster DEMs (Digital Elevation Maps). These raster images consist of a regular grid of height values as well as a so-called georeference which is a projection that associates sample coordinates with physical locations on the planetary surface.

For the output coordinate system we chose the HEALPix grid as it uniformly samples the sphere which allows for artifact-free spherical rendering without coordinate singularities. This is achieved by tesselating the sphere into a set of 12 curvilinear base patches which are uniformly subdivided to form a grid hierarchy \[\text{[GHB+05]} \].

We use a quad tree subdivision scheme on top of this hierarchical grid to obtain a multi-resolution database suitable for Level-of-Detail terrain rendering as well as for representing sparse and mixed-resolution datasets. A forest of 12 quad trees represents the base patches and each tree node stores a tile of 255 × 255 samples for efficient batching in database management and rendering.

3.2 Off-line database construction

In the following we will describe the resampling process which converts a set of raster maps to a terrain database. This requires selecting a quad tree subdivision depth which adequately samples the input raster maps. Considering the tiling used in our approach, the ground area of a single sample at tree depth \(d \) for a spherical planet of radius \(r \) is given by

\[
A_d = \frac{4\pi r^2}{12 \cdot 254^2 \cdot 4^d},
\]

which is constant everywhere due to the HEALPix equal-area property. For raster maps, the area represented by an input pixel is usually given. To preserve data resolution, we chose a depth \(d \) such that the sample size is equal or small than this value.

The construction process then performs two passes over the given data. In the first pass, the boundary polygon of each raster map is projected to the HEALPix coordinate system to determine the set of intersected leaf nodes. Output file locations are assigned to nodes at this point to optimize the data layout for rendering. Note that this pass requires little I/O as only file header information is required.
In the second pass, each raster map is loaded sequentially and the intersecting leaf nodes are populated. To compute sample values for each node, each sample coordinate pair is first converted from parametric HEALPix space to geographic coordinates. These geographic coordinates are then converted to pixel coordinates within the input raster image, according to the provided georeference (compare Figure 2). The image is then sampled using bilinear interpolation. Note that all coordinate system conversions are performed at double precision as single precision is not sufficient to encode distinct points on the surface at or below meter-scale [KLJ+09].

Note that datasets can assign a special NODATA value to samples which do not have a meaningful value. This is often the case near the boundaries of a raster map when the actual support is not rectangular in shape. These NODATA values are propagated in interpolation and for sample coordinate outside of the raster image extents, NODATA values are produced as well.

Nodes which already exist in the database are loaded and composited with newly generated data. Each existing sample is replaced by the new sample, unless that new sample was marked as NODATA. This implies that the composition result depends on the order in which input files are processed. Maps which are processed later in the sequence take precedence and replace already existing data. Therefore, care must be taken that data is specified in corresponding order from coarse to fine resolution. This could easily be automated, how-
ever, since the sample resolution of each dataset is given as header information. Figure 3 demonstrates the result of combining HRSC with MOLA DEMs.

After producing the finest level of the hierarchy in this manner, the inner nodes of each quad tree are generated by successive downsampling of the leaf nodes.

3.3 GPU-accelerated resampling

To accelerate the resampling process described above, we developed a GPU implementation using the CUDA framework. As before, raster images are processed sequentially. Large images which do not fit into GPU memory are first subdivided into chunks which are then transformed individually.

For processing, each chunk and the associated georeference is uploaded to GPU memory and the set of intersecting tiles is produced. For performance reason, tiles are processed in batches of 64 elements. For each batch, tile coordinates are uploaded and a CUDA kernel is executed which performs projection and resampling. Kernel execution and downloading of result tiles to CPU memory are overlapped using CUDA streams, which allows finished data to be transferred as other tiles are still being processed.

As in the CPU implementation, all coordinate conversions are performed using double precision arithmetic, which was not feasible on early CUDA implementations that suffered from very low double-precision performance. On current hardware generations, however, double-precision arithmetic is efficient and achieves half of the single-precision bandwidth. After tile generation and downloading, the tree is populated by iterative downsampling as before. This is still executed on CPU, as it is a relatively inexpensive operation.

3.4 On-line approach

To eliminate the turn-around time for visualizing raster maps, we developed an on-line approach in which tiles needed for visualization are generated on-the-fly by a distributed pre-processing back-end (Figure 4). In contrast to the previous hierarchical construction scheme, which used iterative downsampling to produce inner nodes, the online scheme uses point sampling to directly compute sample values for inner nodes.

To enable the cluster nodes to answer random queries in short time, the datasets to be visualized are loaded into host RAM when the system is started. To optimize memory utilization, input files are distributed equally (by size) across all cluster nodes. As the input files are loaded they are subdivided into chunks and tile coverage for each chunk is computed.

When all data is loaded, the cluster nodes start receiving requests from the front-end. Tile requests which are not covered by any loaded chunk generate an empty reply message. All other requests are handled using the GPU resampling algorithm. To generate a tile it is necessary that the corresponding chunk is resident in GPU memory. However, replacing the currently loaded chunk is expensive because it involves copying the data over a relatively slow bus.
To minimize this paging of chunks, a set of outstanding tile requests is maintained. These tile requests are grouped by the chunk they refer to and each group is processed as a batch. Tiles which are intersected by multiple chunks are included in each corresponding batch. For these tiles, the resulting data is composed as described in 3.2. After processing all outstanding requests, resulting tiles are sent to the rendering front-end and the process is repeated with the set of requests which have been received asynchronously in the meantime.

Once the front-end has received a reply by each cluster node for a given request, it composes the data received and incorporates it into the visible set of tree nodes.

4 Results

For benchmarking, we used a machine equipped with a dual Intel Xeon X5670 hexacore processor with hyper-threading, resulting in 24 “virtual” cores, as well as 48 GiB of host RAM and a NVIDIA Quadro 6000 GPU with six GiB of memory. The cluster used for on-line pre-processing consists of four machines of the same hardware configuration.

4.1 Raw resampling performance

Resampling performance was measured using the set of 1173 HRSC archival DEMs [GSP+10] with a total size of 23.2 GiB. Out of these, 12 files (80 MiB) had to be excluded as they use
stereographic projection, which was not supported by our CUDA kernel at that time. Using the formula given in 3.2, we chose a quad tree depth of $d = 8$.

For each input file, the intersecting tile set was computed and all tiles at the finest resolution were generated, measuring total CPU and GPU implementation runtimes for tile generation only. The CPU resampling kernel was parallelized using OpenMP to make full use of all available CPU cores.

The CPU implementation required a total time of 52 minutes in tile generation while the GPU implementation completed the same workload in 2 minutes, of which 15 seconds were required for data upload. Download of results was not measured separately but is included in the given time. The GPU implementation therefore achieved a speed-up factor of 27.9 for resampling and downloading of results and 24.7 when including the time required for uploading input data.

This result is explained by the fact that the GPU architecture is well-suited for the problem since samples can be evaluated in parallel. For implicitly defined grids as in [KLJ+09] and [BCK+11] this would not be the case. Furthermore, the kernel exhibits a high arithmetic density due to the multiple coordinate system transformations involved for each sample.

4.2 Off-line pre-processing

To measure the impact our improvements have in an actual application, a quad tree representation of the same dataset was constructed on external storage, producing a 120 GiB database. The CPU-based construction required 101 minutes while the GPU variant required 59 minutes, a 70% performance increase. Disk I/O was identified as a bottleneck as a significant fraction of the time (about 50 minutes) was spent waiting for I/O completion.

4.3 On-line pre-processing

To demonstrate on-line pre-processing of mixed resolution datasets, the input dataset used previously was extended by the MOLA MEG128 data, which is two GiB in size. A tree depth of five was chosen for this data.

The data files (26 GiB total) were distributed about equally among the four cluster nodes. The start up time required for all server processes was 70 seconds. The additional time then required to provide a coarse initial rendering (at tree depth 0) was measured to be about ten seconds. This is explained by the fact that the root nodes of the hierarchy contain all map chunks. Therefore each chunk had to be uploaded in turn to generate the root nodes.

However, performance improved once the initial levels of the tree had been generated and cached by the front-end. See Figure 5 for a timeline of convergence for the first four levels in a top-down view of Vall es Marineris. Figure 6(a) shows the average time the front-end needed to wait for a requested tile, depending on tree depth, collected during an extended browsing session.

Because tree nodes contain a fixed number of height samples and the LoD scheme employed by the front-end attempts to maintain a fixed ratio between number of triangles and
screen pixels, the number of visible nodes is approximately constant. As the viewer moves closer to the planetary surface, however, the number of visible chunks decreases and requests for tiles deeper in the tree are serviced faster as paging is reduced.

Statistics revealed an average batch size of 27 tiles, meaning that for every 27 tiles produced one chunk had to be uploaded. Uploading a single chunk took 0.23 seconds on average, while resampling of all tiles in a batch required only 0.017 seconds. Bus bandwidth is therefore clearly a bottleneck in this system.

Considering the speed-up factor established in 4.1, the CPU implementation would be expected to require 0.47 seconds for processing a batch, which is still almost twice the time needed by the GPU solution. The break-even point of similar performance would then be expected at 13 tiles per batch.

5 Conclusion and future research possibilities

We have presented a GPU-based approach to pre-process geo-referenced raster maps for spherical terrain rendering. Furthermore, the algorithm was extended to an on-line pre-processing scheme which enables interactive visualization of large datasets within minutes.

Key to our approach is the assumption that the input data is resident in host RAM. Constructing pre-filtered mipmaps of the input files on external storage as in [KLJ+09]
would increase startup time of the system but allow for out-of-core visualization of larger datasets. Mipmap generation can be expected to be fast as it requires only linear I/O, as opposed to construction of a quad tree database.

In the future, we want to apply the system to actual dynamic data which changes at runtime. This would require a mechanism by which the back-end can load files at runtime and instruct the front-end to invalidate sub-trees of the visible set. This would in turn make the front-end request the affected tiles again. The newly generated tiles from the backend would then represent the updated data.

References

