Function Field Analysis for the Visualization of Flow Similarity in Time-Varying Vector Fields

ISVC 2012

Harald Obermaier and Kenneth I. Joy
Introduction

\[\nu : \mathbb{R}^3 \times \mathbb{R} \rightarrow \mathbb{R}^3 \]
Introduction

\[v : \mathbb{R}^3 \times \mathbb{R} \rightarrow \mathbb{R}^3 \]
Introduction

\[\nu : \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}^3 \]

Lagrangian analysis vs. local flow behavior
• Similarities in time-varying flow behavior:
 – Detection of (known/critical) patterns
 – Domain-centered (maps) flow comparison
 – Time-varying symmetries
Solution: reformulate field as function field

\[v : \mathbb{R}^3 \times \mathbb{R} \rightarrow \mathbb{R}^3 \]

\[F : \mathbb{R}^3 \rightarrow (\mathbb{R} \rightarrow \mathbb{R}^3) \]

Flow pattern \(f_x = v(x, .) \)

Flow motif \((f_x, [t_0, t_1])\)

In practice: Discretize data as set of vector-valued time series
Visual Similarity

• 2D: visually encode average flow direction [Hlawatsch et al. 2011]
Visual Similarity

from “Flow Radar Glyphs - Static Visualization of Unsteady Flow with Uncertainty”, Hlawatsch et al. 2011

- Basic impression of similarity
- Hard to quantify
- Not suitable for 3D function field analysis
Similarity Measures

- Quantify: What should be considered similar?
 - *Comparable* curves/velocity vector movements
 - Same *class* of flow behavior

Different levels of abstraction needed
Similarity Measures

• Formal requirements:
 – Computational efficiency
 • Fast similarity search
 – Robustness
 • Reduce impact of small scale noise
 – Flexibility
 • Invariant to local transformations
Similarity Measures

• Distance: Maximal vector dissimilarity
 – Compensate for rotation by aligning motifs in 3D

\[d(f, g) = \max_t (\min_R (1 - f(t) \cdot Rg(t))) \]
• Behavioral similarity
 – Define predicates for abstract flow behaviors

\[f_x \Rightarrow ([P(A), P(B), ...], [5, 10, ...]) \]
\[d(f, g) = \| f(2) - g(2) \| \]
Applications

• Clustering
 – Automatic grouping of similar flow behaviors

• Querying in 4D
 – Manual filtering/selection / similarity search
Visualization and Interaction

- **Linked views**
 - Compound function space
 - Function field with domain geometry
Visualization and Interaction

• Function space:
 – Brushing for motif selection
 – Cluster and similarity selection/visualization
• Function field:
 – Behavior querying
 • Specify sequences of behavior predicates
 – Motif recording and querying
 • Select region of interest \(\{ x_i \} \) and time range \([t_0, t_1]\)

\[
S = \{(f_{x_1}, [t_0, t_1]), \ldots, (f_{x_n}, [t_0, t_1])\}
\]

\[
\{g = (g_x, [t_i, t_j]) \mid \exists f \in S : d(g, f) < \epsilon\}
\]
Results
Results
Summary and Conclusions

- Time-varying flow similarity and symmetry analysis
- Flow pattern detection
- Potential application in flow compression
- Integrate further flow quantities
Function Field Analysis for the Visualization of Flow Similarity in Time-Varying Vector Fields

Thank You