Overview

A general method can be specified to subdivide a Bézier patch. This method is specified unlike the matrix methods, as it is based upon the definition of the patch as a set of curves.

The Method for Subdivision

We recall that, if we take the analytic equation of a Bézier patch, fix u and group factors appropriately, we obtain

$$P(u, v) = \sum_{j=0}^{m} \left[\sum_{i=0}^{n} P_{i,j} B_{i,n}(u) \right] B_{j,m}(v)$$

We notice that portion of the equation inside the brackets is the representation of a Bézier curve. If we let $Q_j(u)$ be the value inside the brackets, i.e.

$$Q_j(u) = \sum_{i=0}^{n} P_{i,j} B_{i,n}(u)$$

Then

$$P(u, v) = \sum_{j=0}^{m} Q_j(u) B_{j,m}(v)$$

That is, the quantities $Q_j(u)$ form the control points of another Bézier curve, and together for all u and v, they form the surface.

If, then, we subdivide each of the m rows of the $P_{i,j}$ matrix, it implies that the Q_j's in the above equation represent only points from the first half of the patch (with respect to u). The following illustration shows the result of subdividing the rows in the 4×4 case.
The second half of the patch can be obtained in a similar fashion. The first and second half of
the patch, with respect to v, can be obtained by subdividing the columns.

Patch Subdivision Using the Matrix Form

Suppose we wish to subdivide the patch at the point $u = \frac{1}{2}$. We reparameterize the matrix
equation above (by substituting $\frac{u}{2}$ for u) to cover only the first half of the patch, and simplify to
obtain.
\(P\left(\frac{u}{2}, v \right) = \begin{bmatrix} 1 & \left(\frac{u}{2} \right)^2 & \left(\frac{u}{2} \right)^3 \end{bmatrix} M \begin{bmatrix} P_{0,0} & P_{0,1} & P_{0,2} & P_{0,3} \\ P_{1,0} & P_{1,1} & P_{1,2} & P_{1,3} \\ P_{2,0} & P_{2,1} & P_{2,2} & P_{2,3} \\ P_{3,0} & P_{3,1} & P_{3,2} & P_{3,3} \end{bmatrix} M^T \begin{bmatrix} 1 \\ v \\ v^2 \\ v^3 \end{bmatrix} \)

\[
= \begin{bmatrix} 1 & u & u^2 & u^3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & \frac{1}{8} \end{bmatrix} M \begin{bmatrix} P_{0,0} & P_{0,1} & P_{0,2} & P_{0,3} \\ P_{1,0} & P_{1,1} & P_{1,2} & P_{1,3} \\ P_{2,0} & P_{2,1} & P_{2,2} & P_{2,3} \\ P_{3,0} & P_{3,1} & P_{3,2} & P_{3,3} \end{bmatrix} M^T \begin{bmatrix} 1 \\ v \\ v^2 \\ v^3 \end{bmatrix}
\]

where the matrix \(S_L \) is defined as
and is identical to the left subdivision matrix for the curve case. So in particular, the subpatch \(P\left(\frac{4}{2}\right) \) is again a Bézier patch and the quantity

\[
\begin{bmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \end{bmatrix}
\begin{bmatrix} P_{0,0} \\ P_{1,0} \\ P_{2,0} \\ P_{3,0} \end{bmatrix}
\]

forms the control points of this patch.

Calculation of the Second Half of the Patch

In the same way, we can obtain the subdivision matrix for the second half of the patch. First
we reparameterize the original curve, and then simplify to obtain

\[
P\left(\frac{1}{2} + \frac{u}{2}, v\right) = \left[1 \ (\frac{1}{2} + \frac{u}{2}) \ (\frac{1}{2} + \frac{u}{2})^2 \ (\frac{1}{2} + \frac{u}{2})^3 \right] M \begin{bmatrix}
P_{0,0} & P_{0,1} & P_{0,2} & P_{0,3} \\
P_{1,0} & P_{1,1} & P_{1,2} & P_{1,3} \\
P_{2,0} & P_{2,1} & P_{2,2} & P_{2,3} \\
P_{3,0} & P_{3,1} & P_{3,2} & P_{3,3}
\end{bmatrix} M^T \begin{bmatrix}
1 \\
v \\
v^2 \\
v^3
\end{bmatrix}
\]

\[
= \left[1 \ u \ u^2 \ u^3 \right] M S_R \begin{bmatrix}
P_{0,0} & P_{0,1} & P_{0,2} & P_{0,3} \\
P_{1,0} & P_{1,1} & P_{1,2} & P_{1,3} \\
P_{2,0} & P_{2,1} & P_{2,2} & P_{2,3} \\
P_{3,0} & P_{3,1} & P_{3,2} & P_{3,3}
\end{bmatrix} M^T \begin{bmatrix}
1 \\
v \\
v^2 \\
v^3
\end{bmatrix}
\]

where

\[
S_R = \begin{bmatrix}
\frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \\
0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

which is identical to the right subdivision matrix in the curve case and we obtain a matrix that can be applied to a set of control points to produce the control points for the second half of the patch.

General Subdivision with either Parameter

We can develop a procedure to generate the control points for the first and second portions of the patch when subdivision is done with respect to \(v \). These are

\[PS_L \text{ and } PS_R \]
where

\[
P = \begin{bmatrix}
P_{0,0} & P_{0,1} & P_{0,2} & P_{0,3} \\
P_{1,0} & P_{1,1} & P_{1,2} & P_{1,3} \\
P_{2,0} & P_{2,1} & P_{2,2} & P_{2,3} \\
P_{3,0} & P_{3,1} & P_{3,2} & P_{3,3}
\end{bmatrix}
\]

The development is exactly parallel to that with respect to \(u \).

Combining these two methods, we can see that the arrays

\[
S_L P S_L \\
S_R P S_L \\
S_L P S_R \\
S_R P S_R
\]

segment the patch into quarters, the first array being the quarter that corresponds to \(0 \leq u \leq \frac{1}{2}, 0 \leq v \leq \frac{1}{2} \), the second to the one that corresponds to \(0 \leq u \leq \frac{1}{2}, \frac{1}{2} \leq v \leq 1 \), etc.

Summary

So, using only curve methods, and by subdividing the rows or columns of the control point array, we can effectively subdivide a Bézier patch. This is the most frequently used algorithm in software implementations of subdivision and can be utilized for Bézier patches of arbitrary degree.