Piecing Two Bézier Curves Together

Given two Bézier curves \(P(t) \) and \(Q(t) \) of the same degree \(n \), defined by two sets of control points \(\{P_0, P_1, ..., P_n\} \) and \(\{Q_0, Q_1, ..., Q_n\} \), there are some immediate observations one can make when piecing these curves together. First, we must choose a parameterization so that the resulting curve, say \(R(t) \), has a smooth variation of parameters. For example, let’s assume that \(P(t) \) is parameterized in the interval \([a, b]\), and \(Q(t) \) is parameterized in the interval \([b, c]\). Then \(R(t) \) will be parameterized in the interval \([a, c]\).

The figure below shows two Bézier curves pieced together. Here we have used \(a = 0 \), \(b = 1 \), and \(c = 2 \).

In order to insure that the curve \(R(t) \) is continuous, \(i.e., C^0 \), we must insure that \(P(b) = Q(b) \). That is, \(P_n = Q_0 \).
In order to insure that the curve R is C^1, we must have that the derivative is continuous. Since the individual Bézier curve components are automatically C^1 (They are polynomials, which are C^∞, all derivatives are continuous), we just need to insure that $R'(t)$ is continuous at b. This implies that $P'(b) = Q'(b)$, and calculating derivatives, we have

\[
P'(b) = \frac{n}{b-a} (P_n - P_{n-1})
\]
\[
Q'(b) = \frac{n}{c-b} (Q_1 - Q_0)
\]

Substituting for P_n and Q_0, which are the same number, we have

\[
\frac{n}{c-b} (Q_1 - R(b)) = \frac{n}{b-a} (R(b) - P_{n-1})
\]

and simplifying, we get

\[
Q_1 = \frac{c-b}{b-a} (R(b) - P_{n-1}) + R(b)
\]

which says that Q_1 must lie on the line $P_{n-1}P_n$, and be a fixed distance from $R(b) = P_n = Q_0$. So in order to get C^1, Q_1 is determined by the parameterization a, b, and c, and the two points P_{n-1} and P_n. Interesting!!

In the illustration above, where $a = 0$, $b = 1$, and $c = 2$, the constant $\frac{c-b}{b-a}$ is just 1, and we can see that Q_1 not only lies on the line P_2P_3, but the vectors $P_3 - P_2$ and $Q_1 - Q_0$ are the same.

What if we want the curve to be C^2?

Then the second derivatives at b must match, i.e., $R''(b) = P''(b) = Q''(b)$. Differentiating the analytic definition of the Bézier curve gives

\[
P'(t) = n \sum_{i=0}^{n} P_i [B_{i-1,n-1}(t) - B_{i,n-1}(t)]
\]
\[
= n \sum_{i=0}^{n-1} [P_{i+1} - P_i] B_{i,n-1}(t)
\]
and differentiating again, we obtain

\[P''(t) = n(n - 1) \sum_{i=0}^{n-2} \left[(P_{i+2} - P_{i+1}) - (P_{i+1} - P_i)\right] B_{i,n-2}(t) \]

\[= n(n - 1) \sum_{i=0}^{n-2} [P_{i+2} - 2P_{i+1} + P_i] B_{i,n-2}(t) \]

and if we add in the parameterization, using the chain rule, we obtain

\[P'(\frac{t-a}{b-a}) = n\frac{1}{b-a} \sum_{i=0}^{n-2} [P_{i+1} - P_i] B_{i,n-1}(\frac{t-a}{b-a}), \text{ and} \]

\[P''(\frac{t-a}{b-a}) = n(n - 1) \frac{1}{(b-a)^2} \sum_{i=0}^{n-2} [P_{i+2} - 2P_{i+1} + P_i] B_{i,n-2}(\frac{t-a}{b-a}) \]

Similarly,

\[Q'(\frac{t-b}{c-b}) = n\frac{1}{b-a} \sum_{i=0}^{n-2} [Q_{i+1} - Q_i] B_{i,n-1}(\frac{t-b}{c-b}), \text{ and} \]

\[Q''(\frac{t-b}{c-b}) = n(n - 1) \frac{1}{(b-a)^2} \sum_{i=0}^{n-2} [Q_{i+2} - 2Q_{i+1} + Q_i] B_{i,n-2}(\frac{t-b}{c-b}) \]

Thus if \(P''(b) = Q''(b) \), we must have

\[\frac{1}{(b-a)^2} [P_n - 2P_{n-1} + P_{n-2}] = \frac{1}{(c-b)^2} [Q_0 - 2Q_1 + Q_2] \]

So, since \(P_n = Q_0 \), and \(Q_1 \) is determined by Equation (1), we can solve directly for \(Q_2 \).

Thus, if we desire \(C^2 \) for the curve \(R \), then all of \(Q_0 \), \(Q_1 \), and \(Q_2 \) are determined by the positions of \(P_{n-2}, P_{n-1}, \) and \(P_n \), and the parameterization we choose for the curve. So only \(Q_3, Q_4, ..., Q_n \) are free to choose.

Thus, in the illustration below where we are trying to piece together two cubic Bézier curves \(P(t) \) and \(Q(t) \) with parameterizations \([0, 1]\) and \([1, 2]\), respectively, we are really only able to choose \(Q_3 \) freely if we want the curve to be \(C^2 \).
If we desire C^3 continuity on the illustrated curve case above, then all control points Q_0, Q_1, Q_2, and Q_3 will be determined by the control points P_0, P_1, P_2, and P_3, and the parameterization we choose. **In this case the two control point sets represent the same Bézier curve.**

Summary

Piecing together two Bézier curves with C^k continuity determines many of the control points *a priori.*