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ABSTRA CT

Deformable isosurfaces,implemented with level-set methods, have demonstrated a

great potential in visualization and computer graphics for applications such as segmen-

tation, surfaceprocessing,and surfacereconstruction. Their usefulnesshas beenlimited,

however, by two problems. First, three-dimensional level sets are relatively slow to

compute. Second,their formulation usually entails free parameters that can be di±cult

to tune correctly for speci¯c applications. The secondproblem is compounded by the

¯rst. This thesis presents a solution to thesechallengesby describing graphics processor

unit (GPU) basedalgorithms for solving and visualizing level-set solutions at interactive

rates for volumesas large as 2563.

Level-settechniquesdeform isosurfacesby solving partial di®erential equations(PDEs)

on a voxel grid. E±cien t solvers for the equationscompute a solution only at thosevoxels

on or near the isosurface.The active elements in this narrow-band of computation change

as the level-set solution evolves. This thesis demonstratesthat such dynamic sparse-grid

computations can be e±ciently solved using a streaming architecture platform{a modern

graphics processor. The solution usesa multidimensional virtual memory mapping to

pack the active, three-dimensional voxel data into two-dimensional texture memory on

the GPU. A novel GPU-to-CPU messagepassingschemequickly updatesthis sparsedata

structure as the isosurfacemoves.

The integration of the level-setsolver with a real-time volume rendererallows a userto

visualize and steer the deformable level-set surfaceas it evolves. The resulting isosurface

can also serve as a region-of-interest speci¯er for the volume renderer. This thesis

demonstratesthe capabilities of this technology for interactive volume segmentation and

visualization. This thesis also presents an evaluation of the method with a brain tumor

segmentation user study.
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CHAPTER 1

INTR ODUCTION

1.1 Problem Statemen t
Surfacesde¯ne the objects in the world around us|the rough surfaceof a granite rock

cli®, the smooth plastic of a child's toy, the complex surfaceof a kitchen sponge,and the

dynamic water surfaceof a stormy sea. Scienti¯c exploration often includesthe search for

surfacesthat denoteimportant boundaries. Examplesinclude a geologistsearching for oil

deposits in the earth's strata, a neurosurgeon¯nding the exact extent of a brain tumor,

and a snow avalanche forecasterdiscovering a dangerouslyweak layer in a mountain snow

pack.

Just as in the physical world, surfacesare a critical component of computational

scienceand computer graphics. There are many techniques for representing computa-

tional surface models including vertex meshes,b-spline patches, implicit surfaces,and

others. The deformation of thesesurfacerepresentations, however, presents a number of

challenges.Example applications of deformablesurfacesinclude surfacetracking in °uid

simulations, image and volume segmentation, and surface processing(e.g., smoothing,

sharpening, blending).

The deformation of an explicit surface representation (e.g., vertex mesh) involves

updating connectivity and parameterization information. This can be di±cult as well

as limit the range of possible deformations to those which do not change topological

genus. Implicit surfaces,on the other hand, can easily change topological genus, split

into multiple entities, and mergemultiple surfacestogether. The deformation technique

discussedin this thesis, the level-set method, is a promising technique for modeling

deformable implicit surfaces.

Level-setmethods model deformableisosurfaceswith a set of partial di®erential equa-

tions (PDEs) that act on an implicit surfacevoxel grid. The speci¯c PDEs, and thus the

surface deformations, are determined by the level-set application. For physically-based

simulation applications, the simulation resultsdeterminethe surfacemovement. For many



2

nonsimulation applications (e.g., surfaceprocessingand segmentation), level-set surface

deformation is controlled by a set of free parameters.

While the level-set approach is °exible and powerful, its use can be problematic.

First, level setsare relatively slow to compute. Second,the free parametersusedby some

applications to control surfacedeformation are often di±cult to set. The latter problem

is compoundedby the ¯rst because,in many scenarios,a usermust wait minutes or hours

to observe the results of a parameter change.

In responseto the needto acceleratelevel-set computations, researchers have created

a number of optimization strategies. The most successfulof theseare the sparse-grid and

narrow-band strategieswhich solvethe level-setPDE only on the voxelsnear the isosurface

(rather than on the entire voxel grid). Although theseoptimized solversachievesigni¯cant

speedups, they are still far from interactive for all but the smallest three-dimensional

computations. The work in this thesis builds on these optimizations by presenting a

narrow-band algorithm that runs on a modern graphics processor.

The streaming architecture of modern graphics processorsprovides an attractiv e

alternate computing platform for computationally demanding problems. These spe-

cialized processorsacceleratethree-dimensional computer graphics computations with a

combination of dedicated hardware, data-parallel computation, and high-speedmemory.

Although level-set algorithms exhibit the required data-parallelism to run on GPUs, the

sparseand dynamic nature of the computation makesmapping them to graphicshardware

di±cult.

This thesis presents a solution to the above problems by presenting an e±cient map-

ping of the level-set partial di®erential equations to a commodit y graphics processor.

This GPU-based solver runs up to 15 times faster than a highly-optimized sparse-¯eld

implementation running on a modern central processingunit (CPU). By combining the

fast solver with a real-time volume renderer, a user is able to both visualize and easily

control the evolving computation. This thesis presents an interactive volume segmenta-

tion application built with this new solver. The thesis also presents an evaluation user

study in which brain tumors are segmented from MRI data using this new segmentation

tool.
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1.2 Con tributions and Results
This thesis makescontributions in the ¯elds of deformable surfaceprocessing,GPU-

basedstreamingcomputation, volumevisualization, and medicalsegmentation. The main

contributions are:

² An integrated systemdemonstrating that level-set computations can be intuitiv ely

controlled by coupling a real-time volume renderer with an interactive solver

² An interactive volume segmentation application built with the new solver, and a

userstudy that quanti¯es the e®ectivenessof the newtool for quickly and accurately

segmenting tumors from MRI data sets

² A GPU-based three-dimensional level-set solver that is approximately 15 times

faster than previous optimized solutions

² A multidimensional virtual memory schemefor GPU texture memory that supports

computation on time-dependent, sparsedata domains

² A messagepassingschemebetweenthe GPU and CPU that usesautomatic mipmap

generation to create compact encoded bitcode messages

² Real-time volume rendering directly from a two-dimensionalpacked, sparsetexture

format

² Region of interest speci¯cation for the volume renderer

² E±cien t computation of a volumetric distance transform on the GPU

1.3 Overview
The following chapter discussespreviouswork and background for level sets,GPUs and

hardware-acceleratedvolume rendering. Chapter 3 describesthe details of the streaming

narrow-band solver. The ¯rst section (Section 3.2) intro ducesa multidimensional virtual

memory system used to pack the active three-dimensional data into two-dimensional

texture memory. Section3.3 then describesthe details of the streaming level-setsolver in

terms of the virtual memory system. That sectionalsoexplains a new distancetransform

computation that runs e±ciently on the GPU. Section 3.4 explains how the packed,

two-dimensionaldata format is volume renderedat interactive rates. Chapter 4 describes

the interactive, three-dimensional segmentation application built using the streaming
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level-set solver. Section 4.3 discussesthe performanceof the application, and Section 4.4

presents a brain tumor segmentation an evaluation user study performed with the new

tool. The conclusions in Chapter 5 summarize the work and propose future research

directions in both streaming level-set solvers and graphics hardware.



CHAPTER 2

TECHNICAL BA CK GR OUND AND

RELA TED W ORK

2.1 The Level-Set Metho d
The level-setsurfacedeformation technique is basedon an implicit surfacerepresenta-

tion. In the level-set approach, an n-dimensional manifold is embeddedin a Rn+1 space

(i.e., a manifold with codimension one). A scalar function, Á(x; t), de¯nes the surface

embedding, where x 2 Rn+1 and t is time. The set of points on the surfaceat time t, St ,

are mapped by Á(x; t) such that

St = f x jÁ(x; t) = kg; (2.1)

where k is an arbitrary scalar value (often zero). It can also be said that St is the k level

set of Á(x; t). The discrete representation of Á(x; t) is referred to as the embedding of the

level set k. For instance, the embedding for the kth level set can be created by setting

each point on a uniform grid in S0 to k, all points inside the surfaceto Á(x; 0) > k and

all grid points outside to Á(x; 0) < k. The signeddistance from the k isosurfaceis often

usedfor the embedding, Á(x; t), but it is not a requirement of the technique.

The embedding, Á(x; t), evolveswith the surface,and the relationship is given by the

¯rst-order, partial di®erential equation

@Á(x; t)
@t

= ¡r Á(x; t) ¢v (x; t); (2.2)

where v(x; t) describes the velocity of the surface at point x at time t. Within this

framework one can implement a wide range of deformations by de¯ning an appropriate

v (x; t). This velocity term is often a combination of several other terms, including data-

dependent terms, geometric terms (e.g., curvature), and others. In many applications,

thesevelocities intro duce free parameters, and the proper tuning of those parameters is

critical to making the level-set model behave in a desirablemanner. Equation 2.2 is the
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general form of the level-set equation, which can be tuned for wide variety of problems

and which motivates the architecture of the new solver.

Although the proposed solver addressesthe solution to Equation 2.2, this thesis

restricts the discussion to a special form of Equation 2.2 that is suitable for the seg-

mentation application described in Chapter 4. This special caseof Equation 2.2 occurs

when v(x; t) = G(x; t) n(x; t), where n(x; t) is the surfacenormal and G(x; t) is a scalar

¯eld, which is refereedto as the speed of the level set. In this caseEquation 2.2 becomes

@Á(x; t)
@t

= ¡jr Á(x; t)jG(x; t) : (2.3)

Equation 2.3 describes a surface motion in the direction of the surface normal, and

thus the volume enclosedby the surface expands or contracts, depending on the sign

and magnitude of G(x; t). The remainder of this thesis usesan abbreviated notation

by assuming the spatial and temporal variabilit y of Á(x; t), G(x; t), and n(x; t) are

understood. Thesequantities are thus referred to as Á, G, and n respectively.

The mean curvature of the level setsof Á, H , (hereafter referred simply as curvature)

is commonly usedas a level-set speedfunction (i.e., G). Becauseapplying curvature °ow

to a surfaceminimizes surfacearea, curvature is often combined with data-basedspeed

terms to smooth out an otherwise rough or noisy surface solution. A convex surface

under pure curvature °ow will converge to the n-sphereand ¯nally a single point [14].

The mean curvature of Á is de¯ned as

H = cn r ¢
r Á

jr Áj
; (2.4)

where, if n is the dimensionality of the surface,cn = 1=(n ¡ 1).

There is a special caseof Equation 2.2 in which the surfacemotion is strictly inward

or outward. In such casesthe PDE can be solved somewhat e±ciently using the fast

marching method [44] and variations thereof [11]. However, this casecovers only a very

small subsetof interesting speedfunctions. In general,this work in this thesisis concerned

with solutions that allow the model to expand and contract aswell as include a curvature

term.

The initial estimation of Á is propagated forward in time using ¯nite forward dif-

ferences. The gradient magnitudes are computed with the up-wind scheme [34]. To

guarantee a stable solution, the upwind schemeapproximates r Á using one-sidedderiva-

tiv es that are always in the up-wind direction of the propagating surface. The largest
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allowable time step, 4 t, is inverselyproportional to the maximum speedat a given time,

t. about max value for 4 t is used. Given that @Á
@t is de¯ned by Equation 2.3 and the

generalupdate equation is

Á(x; t + 4 t) = Á(x; t) + 4 t
@Á
@t

; (2.5)

the level set update equation is

Á(x; t + 4 t) = Á(x; t) + 4 tF jr Áj: (2.6)

The details of estimating r Á and H are presented in Appendix A.

2.2 Narro w-Band Level-Set Solvers
E±cien t algorithms for solving the more generalequation rely on the observation that

at any one time step the only parts of the solution that are important are those adjacent

to the moving surface(near points whereÁ = 0). This observation placeslevel-setsolvers

as part of a larger class of solvers that e±ciently operate on time-dependent, sparse

computational domains|i.e., a subsetof the original problem domain. However, in order

to take advantage of the sparsenature of level-set solutions, algorithms must maintain a

somewhatconsistent level-setdensity (i.e., r Á), which is de¯ned as the number of level

setsper unit volume. If the level-set density becomestoo low (spread out) it can become

di±cult to e±ciently isolate the computation to the desired interface. Alternativ ely, a

level-set density that becomestoo high (closetogether) can causealiasing and numerical

problems. To addressthis, level-setsolversmust managethe motion of the level sets,their

density, and the position of the model relative to the desired computational domain.

In general time-dependent, sparsealgorithms maintain proper motion and density by

iterating on the three stepsshown in Figure 2.1.

Two of the most common CPU-based level-set solver techniques are the narrow-

band [1] and sparse-¯eld [57] methods. Both approacheslimit the computation to a nar-

row region near the isosurfaceyet store the complete computational domain in memory.

The narrow-band approach implements the initialization and update steps in Figure 2.1

(Steps1 and 3) by updating the embedding,Á, on a band of 10-20pixels around the model,

using a signeddistance transform implemented with the fast marching method [44]. The

band is reinitialized whenever the model (de¯ned as a particular level set) approaches

the edge. In contrast, the sparse-¯eldmethod traversesthe completedomain only during
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Figure 2.1. The three fundamental steps in a sparse-gridsolver. Step 1 initializes the
sparsecomputational domain. Step 2 executesthe computational kernel on each element
in the domain. Step 3 updates the domain if necessary. Steps 2 and 3 are repeated for
each solver iteration.

the initialization step of the algorithm in Figure 2.1. The sparse-¯eld approach keeps

a linked list of active data elements. The list is incrementally updated via a distance

transform after each iteration. A similar strategy is described in Peng et al. [36]. Even

with this very narrow band of computation, update rates using conventional processors

on typical resolutions(e.g., 2563 voxels) are not interactive. This is the motivation behind

the GPU-based,streaming narrow-band solver presented in this thesis.

2.3 Scienti¯c Computation on Graphics Pro cessors
Graphics processingunits have been developed primarily for the computer gaming

industry, but over the last several yearsresearchershave cometo recognizethem asa low

cost, high performancecomputing platform. Two important trends in GPU development,

increasedprogrammabilit y and higher precision arithmetic processing,have helped to

foster new nongaming applications.

For many data-parallel computations, graphics processorsoutperform central pro-

cessingunits (CPUs) by more than an order of magnitude becauseof their parallel

streaming architecture [35] and dedicated high-speed memory. In the streaming model

of computation, arrays of input data are processedidentically by the samecomputation

kernel to produce output data streams. The GPU takes advantage of the data-level

parallelism inherent in the streaming model by having identical processingunits execute

the computation in parallel.

Although streaming architectures such as GPUs share a data-parallel design with
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Cray-lik e vector computers [41] and massively parallel SIMD computers such as the

Connection Machine system [16], they have several important di®erences. In contrast

to vector architectures, which compute a single instruction on many data elements; the

computation kernel in a streaming architecture may consistof many (possibly thousands)

of instructions and use temporary registers to hold intermediate values. In contrast to

Connection-Machine-like computers that contain thousandsof small processingelements,

each with their own small memory; GPUs use a relatively small number of processing

elements (e.g., 8) that each haveaccessto global memory aswell asa small number of local

registers(e.g., 32). Lastly, in addition to thesearchitectural di®erences,the ubiquit y and

low price of GPUs (e.g., lessthan $500U.S. dollars for a GPU in contrast to millions of

dollars for a vector super-computer) meansthat millions of usersand programmershave

accessto the platform. This large number of usersmakesthe development of GPU-based

algorithms especially warranted at this time.

Currently GPUs must be programmed via graphics APIs such as OpenGL [43] or

DirectX [33]. Therefore all computations must be cast in terms of computer graphics

primitiv es such as vertices, textures, texture coordinates, etc. Figure 2.2 depicts the

computation pipeline of a typical GPU. Vertices and texture coordinates are ¯rst pro-

cessedby the vertex processor. The rasterizer then interpolates across the primitiv es

de¯ned by the vertices and generatesfragments (i.e., pixels). The fragment processor

applies textures and/or performs computations that determine the ¯nal pixel value. A

render pass is a set of data passing completely through this pipeline. It can also be

thought of as the complete processingof a stream by a given kernel.

Grid-based computations are solved by ¯rst transferring the initial data into texture

memory. The GPU performs the computation by rendering graphics primitiv es that

accessthis texture. In the simplest case,a computation is performed on all elements of

a two-dimensional texture by drawing a quadrilateral that covers the same number of

grid points (pixels) as the texture. Memory addressesthat identify each fragment's data

value aswell as the location of its neighbors are given as texture coordinates. A fragment

program (the kernel) then usestheseaddressesto readdata from texture memory, perform

the computation, and write the result back to texture memory. A three-dimensionalgrid

is processedas a sequenceof two-dimensional slices. This computation model has been

used by a number of researchers to map a wide variety of computationally demanding

problems to GPUs. Examples include matrix multiplication, ¯nite element methods, and
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multi-grid solvers[13,26,50]. All of theseexamplesdemonstratea homogeneoussequence

of operations over a denselypopulated grid structure.

Strzodka et al. [40] were the ¯rst to show that the level-set equationscould be solved

using a graphicsprocessor.Their solver implements the two-dimensionallevel-setmethod

using a time-invariant speed function for °ood-¯ll-lik e image segmentation, without the

associated curvature. Their solver did not take advantage of the sparsenature of the

level-set PDEs and therefore performs only marginally better than a highly-optimized

sparse-¯eld CPU implementation. The work in this thesis extends their work to three

dimensions,adds in the second-ordercurvature computation, and signi¯cantly optimizes

the solver by implementing a narrow-band solver on the GPU.

This thesispresents a GPU computational model that supports time-dependent, sparse

grid problems. Theseproblemsare di±cult to solve e±ciently with GPUs for two reasons.

The ¯rst is that in order to take advantage of the GPU's parallelism, the streamsbeing

processedmust be large, contiguous blocks of data, and thus grid points near the level-set

surfacemodel must be packed into a small number of textures. The seconddi±cult y is

that the level set moves with each time step, and thus the packed representation must

readily adapt to the changing position of the model. This requirement is in contrast to

the recent sparsematrix solvers [4, 25] and previous work on rendering with compressed

data [3, 24]. In the two sparse-matrix solvers[4, 25], a packed texture scheme is used

to e±ciently compute sparsematrix-v ector multiplications as well as compute values of

Vertex & Texture
Coordinate data

Vertex Program

Rasterize

Fragment

Program

Texture data

Frame/Pixel Buffer

Figure 2.2. The modern graphics processorpipeline.
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the sparsematrix elements on the GPU. The scheme is static, however, in the sense

that the nonzero matrix elements must be identi¯ed before the computation begins.

Recent work by Sherbondy et al. [47] describes an alternativ e time-dependent, sparse

GPU computation model which is discussedin Chapter 4.3.



CHAPTER 3

STREAMING NARR OW-BAND

ALGORITHM

3.1 In tro duction
This chapter describesGPU-basedstreamingalgorithms for computing and visualizing

the solution of the three-dimensional level-set partial di®erential equations. This new

solver is 10 to 15 times faster than a highly-optimized CPU-basedsparse-¯eld implemen-

tation.

The ¯rst step toward creating a highly optimized GPU-based level-set solver was to

create a brute force solution [30]. The details of this solver are given in Appendix B.

This solver computes the level-set PDE at all voxels in the volume and is a direct

extension of the two-dimensional work of Strzodka et al. [40]. This basic GPU-based,

three-dimensional level-set solver runs one to two times faster than a highly optimized

sparse-¯eld CPU-basedsolver [52]. While this is not an impressive speedup, it is worth

nothing that the GPU-based solver performs approximately 10 times more calculations

than the optimized CPU-based one. As such, a narrow-band/sparse-¯eld GPU-based

solver should theoretically be able to achieve a 10{20 times speedup.

The proposedstreaming, narrow-band level-set solver realizesthesespeedupsby e±-

ciently leveraging the capabilities of modern GPUs. The algorithm packs the active com-

putational domain into two-dimensional texture memory, solves the three-dimensional,

level-set PDE directly on this packed format, and quickly updates the packed data after

each solver iteration.

The design of the streaming narrow-band algorithm takes into account several com-

putational limitations of modern GPUs as well as the goal of interactive performance.

First, the data-parallel computation model requireshomogeneous operations on the entire

computational domain. Second, memory constraints require an e±cient algorithm to

processand store only the active domain on the computational processor(i.e., the GPU).

Third, GPUs do not support scatter write operations [38], and lastly, the communica-
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tion bandwidth between the CPU and GPU is insu±cient to allow transmission of any

signi¯cant portion of the computational domain.

Section 3.2 describesa multidimensional virtual addressschemethat e±ciently maps

the time-varying three-dimensionaldata into a two-dimensionaltexture. Section3.3 then

explains the details of the GPU-basedlevel-set solver. In addition to explaining how the

multidimensional virtual memory schemeis usedin the solver, the sectionalso intro duces

a new distance transform computation that can be e±ciently performed on the GPU.

The direct volume rendering of the deforming level-setsurfaceis explained in Section3.4.

3.2 A Virtual Memory Address Scheme
for Sparse Computation

Remapping the computational domain (a subset of a volume) to take advantage of

the GPU's capabilities has the unfortunate e®ectof making the computational kernels

extremely complicated|that is di±cult to design, debug, and modify. The kernel pro-

grammer must take the physical memory layout into consideration each time the kernel

addressesmemory. Other researchershave successfullyremapped computational domains

to e±ciently leveragethe GPU's capabilities [4, 13, 25, 38], but they invariably describe

these complex kernels in terms of the physical memory layout. This section presents

a solution to this problem that allows kernel programmers to accessmemory as if it

were stored in the original (computational) domain|irresp ective of its physical layout

on the GPU. The solution is an extensionto the virtual memory systemsusedin modern

operating systems.

3.2.1 Traditional Virtual Memory Overview

Nearly all modern operating systems contain a virtual memory system [48]. The

purposeof virtual memory is to give the programmer the illusion that the application

hasaccessto a contiguous memory addressspace,while allowing the operating systemto

allocate memory for each processon demand, in manageableincrements, from whatever

physical resourceshappen to be available. Note that there are two meaningsof virtual

memory. The ¯rst is the mapping from a logical addressspaceto a physical address

space.The secondis the mechanism for mapping logical memory onto a physical memory

hierarchy (e.g., main memory, disk, etc). For this discussion,virtual memory only refers

to the former de¯nition.

Virtual memory works by adding a level of indirection betweenphysical memory and
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the memory accessedby an application. Most conventional virtual memory systems

divide physical and virtual memory into equally sized pages. The data addressedby an

application's contiguous virtual addressspacewill often be stored in many, disconnected

physical memory pages.A pagetable tracks the mapping from virtual to physical memory

pages. When an application requests memory, the system allocates physical memory

pagesand updates the pagetable.

When an application accessesmemory via a virtual address,the systemmust ¯rst per-

form a virtual-to-ph ysical addresstranslation. The virtual address,VA, is ¯rst converted

to a virtual pagenumber, VPN. The system usesthe page table to convert the VPN to

a physical pageaddress,PPA. The PPA is the physical addressof the ¯rst element in a

page. Finally, the memory system obtains the physical address,PA, by adding the PPA

to the o®set,OFF. The OFF is the linear distance between the virtual addressand the

beginning of the virtual pagewhich contains it. The addresscomputation is

VPN Ã VA
S[P]

PPA Ã PageTable(VPN)
OFF Ã mod(VA; S[P])
PA Ã PPA + OFF;

(3.1)

where S[P] is the sizeof a memory page.

3.2.2 Multidimensional Virtual Memory for GPUs

The virtual memory system usedin the proposedsolver is a multidimensional exten-

sion of the traditional virtual memory system described in Section 3.2.1. This section

beginsby de¯ning a generalmultidimensional virtual memory systemand then describes

details speci¯c to the GPU implementation.

Traditional virtual memory systemsuseone-dimensionalvirtual and physical address

spaces.While it is possibleto generalizethe algorithms described in Section 3.2.1 to an

N -dimensional virtual addressspaceand an M -dimensional physical addressspace,the

practicalities of GPUs and the nature of the level-set problem spacedictate the valuesof

N and M . Speci¯cally, GPUs are optimized to processtwo-dimensionalmemory regions

(M = 2), while volumetric level-set computations are de¯ned on a three-dimensional

domain (N = 3). The design also make the simplifying assumption that virtual and

physical pagesare identical in dimension and size. Thus, the virtual spaceis not parti-

tioned equally in all axes: two-dimensional pagesmust be stacked in three-dimensional

to populate the problem domain as seenin Figure 3.1.
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Figure 3.1. The multidimensional virtual and physical memory spacesusedin the paged
virtual addresssystem. The original problem spaceis V, the virtual addressspace.The
virtual pagespace,VP , is a subdivided version of V. Virtual memory pagesare mapped
to the physical pagespace,GP , by the page table. The inverse page table maps physical
pagesin GP to virtual pagesin VP . The collection of all elements in GP constitute G,
the physical memory of the hardware.

The discussionof the various addressspacesinvolved in the multidimensional virtual

addressscheme requires a concisenotation. To begin, the spaceof K -length vectors of

integersis notated asZK . The setof all voxels in the three-dimensionalproblem domain is

the virtual addressspace,which is de¯ned asV ½ Z3. Each of the virtual memory pagesis

a set of contiguous voxels in V; the spaceof all virtual pagesis VP (Figure 3.1). Similarly,

the physical addressspace,G ½ Z2; is subdivided into pagesto form the physical page

space,GP . The elements within a virtual or physical pageare addressedidentically using

elements of P ½ Z2. In addition, a size operator is de¯ned for the two-dimensional and

three-dimensionalspacesdescribed above. For X in f V; VP ; G; GPg, S[X ] is a two-vector

or three-vector (according to the dimension of X ) giving the number of elements along

each axis of the spaceX . Note that S[VP ] = S[V]=S[P] and S[GP ] = S[G]=S[P] (using

component-wise division). The level-set solver system usespagesof sizeS[P] = (16; 16).

This sizerepresents a good compromisebetweena tight ¯t to the narrow computational

domain and the overheadof managing and computing pages. Empirical results validate

this choice.
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Virtual-to-ph ysical addresstranslation in an N -dimensional virtual memory system

works analogously to the one-dimensionalalgorithm. Virtual addressesare now three-

dimensionalposition vectorsin V and physical addressesare two-dimensionalvectorsin G.

The page table is a three-dimensional table that returns two-dimensional physical page

addresses. With these multidimensional de¯nitions in mind, Equation 3.1 still applies

to the vector-valued quantities. Figure 3.2 shows an example multidimensional address

translation.

For the level-set solver in this thesis, the multidimensional virtual memory system

is implemented in part by the CPU and in part by the GPU. The CPU managesthe

page table, handles memory allocation/deallocation requests, and translates VPNs to

PPAs. The GPU issuesmemory allocation/deallocation requestsand computesphysical

addresses.The design further divides the GPU tasks between the various processorson

the GPU. The fragment processorcreatesmemory allocation/deallocation requests. The

addresstranslation implementation usesthe vertex processorand rasterizer to compute

all PAs. Sections 3.2.3 and 3.2.4 describe the architectural and e±ciency reasonsfor

assigningthe various virtual memory tasks to speci¯c processors.
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Figure 3.2. The virtual-to-ph ysical addresstranslation schemein the multidimensional
virtual memory system. A three-dimensionalvirtual address,VA, is ¯rst translated to a
virtual pagenumber, VPN. A pagetable translates the VPN to a physical pageaddress,
PPA. The PPA speci¯es the origin of the physical pagecontaining the physical address,
PA. The o®setis then computed basedfrom the virtual addressand used to obtain the
¯nal two-dimensionalphysical address,PA.
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3.2.3 Virtual-to-Ph ysical Address Translation

This section explains the details of the virtual-to-ph ysical addressschemeusedin the

GPU-based virtual addresssystem. Becausethe translation algorithm is executedeach

time the kernel accessesmemory, its optimization is fundamental to the successof the

method.

The simplestand most generalway to implement the virtual-to-ph ysical addresstrans-

lation for a GPU-basedvirtual memory systemis to directly implement the computation

in Equation 3.1 and store the pagetable on the GPU as a three-dimensional texture. A

signi¯cant bene¯t of this approach is that it is completely general. Unfortunately, with-

out dedicated memory-management hardware to acceleratethe translation, this scheme

su®ersfrom several e±ciency problems. First, the page table lookup means that a

dependent texture read is required for each memory access. A dependent texture is

de¯ned as using the result of one texture lookup to index into another. This may cause

a signi¯cant lossin performanceon current GPUs. Second,storing the pagetable on the

GPU consumeslimited texture memory. The third problem is that a divide, modulus,

and addition operation are required for each memory access.This consumescostly and

limited fragment program instructions. Note that Section 3.2.4 discussesother problems

with storing the pagetable on the GPU related to the limited capabilities of current GPU

architectures.

The solver avoids the memory and computational ine±ciencies that arise from storing

the pagetable on the GPU by examining the pattern of virtual addressesrequired by the

application's fragment program. In the caseof the level-setsolver, the fragment programs

usevirtual addresseswithin only a 3 £ 3 £ 3 neighborhood of each active data element.

This meansthat each active memory pagewill accessonly adjacent virtual memory pages

(Figure 3.3). Moreover, the remainderof this sectionshows that this simpli¯ed translation

casemakes it possibleto lift the entire addresstranslation from the fragment processor

to the vertex processorand rasterizer. The decisionto reconstruct virtual neighborhoods

on-the-°y rather than duplicate data lying on pageboundariesis an important aspect of

the system. The designchoicewasmadeto meet our original goalsof minimizing memory

usage,minimizing memory tra±c, and maintaining square16£ 16 memory pages.

Once the solver resolves the virtual addressesused by a fragment program, it can

determine which virtual pages each active page will access. With this relative page

information, the GPU can perform the virtual-to-ph ysical addresstranslation without
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Figure 3.3. The substream boundary casesused to statically resolve the conditionals
arising from 3 £ 3 £ 3 neighbor accessesacross memory page boundaries. The nine
substream casesare: interior, four edges,and four corners(a). The interior caseaccesses
its neighbors from only three memory pages(b). The edgecasesrequire six pages(c), and
the corner casesrequire 12 memory pages(d). Note that for reasonablylarge pagesizes,
the more cache-friendly interior casehas by far the highest number of data elements.

a pagetable in texture memory. The CPU makes this possibleby sending the PPAs for

all required pagesto the GPU astexture coordinates. The GPU can then usethe relative

neighbor o®setvectors to decide which adjacent page contains the requestedvalue (see

Figure 3.3(a)).

The GPU's task of deciding which adjacent page contains a speci¯c neighbor value

unfortunately requires a signi¯cant amount of conditional logic. This logic must classify

each data element into oneof nine boundary cases:oneof the four corners,oneof the four

edges,or an interior element (seeFigure 3.3). Unfortunately current fragment processors

do not support conditional execution. This logic could alternativ ely be encoded into a

texture; however, this would again force the useof an expensive dependent texture read.



19

Just as statically resolving virtual addressesallowed the solver to optimize the GPU

computation, all active data elements can be preclassi¯ed into the nine boundary cases.

The result is that all memory addressesused in each casewill lie on the same pages

relative to each active page (seeFigure 3.3). In other words, the memory-page-locating

logic has been statically resolved by preclassifying data elements into their respective

boundary cases.The data elements for these substream casesare generatedby drawing

unique geometry for each case.The corner substreamcasesare represented aspoints, the

edgesas lines, and the interior regionsas quadrilaterals.

Kapasi et al. [18] describe an e±cient solution to conditional execution in streaming

architectures. Their solution is to route stream elements to di®erent processingelements

basedon the code branch. Substreamsare merely a static implementation of this data

routing solution to conditional execution. The advantage is that the computation kernel

run on each substreamcontains no conditional logic and is optimized speci¯cally for that

case.The solution additionally gainsfrom optimized cachebehavior for the most common,

interior, case(77%of the data points in a 16£ 16page). The interior data elements require

only three memory pagesto accessall neighbors (Figure 3.3(b)). In comparison,reading

all neighbors for an edgeelement requires loading six pages(Figure 3.3(c)). The corner

casesrequire 12 pagesfrom disparate regions of physical memory(Figure 3.3(d)). The

corner casesaccount for lessthan 2% of the active data elements.

With the useof substreams,the GPU can additionally optimize the addresscomputa-

tion by computing physical addresseswith the vertex processorrather than the fragment

processor.Becauseall data elements (i.e., fragments) useexactly the samerelative mem-

ory addresses,the o®setand physical addresscomputation stepsof Equation 3.1 can be

generatedby interpolating betweensubstreamvertex locations. The vertex processorand

rasterizer can thus perform the entire addresstranslation. This optimization distributes

computational load to underutilized processingunits and reducesthe number of limited

and expensive fragment instructions.

The algorithm described above is a highly optimized addresstranslation scheme for

evaluating neighborhoods of 3 £ 3 £ 3. Many applications, however, require the use of

larger neighborhoods. The substreamand vertex processoroptimizations described above

will, to a limited extent, generalizeto neighborhoods larger than 3 £ 3 £ 3. To process

larger neighborhoods, a separateset of substreamswould need to be generatedfor each

layer of grid points adjacent to memory pageboundaries. Theoretically, neighborhoods
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as large asonehalf of the pagesizecould be processedwith the technique, although there

may be a neighborhood sizebeyond which the cost of splitting the computation into many

small substreamsoutweighs the bene¯ts. A more general technique, such as performing

the full addresscomputation in the fragment stage(as described at the beginning of this

section), may be more advantageousfor processinglarge neighborhoods.

3.2.4 Bo otstrapping the Virtual Memory System

This sectiondescribesthe stepsrequired to initialize the GPU virtual memory system.

To begin, the application speci¯es the pagesize,S[P], the virtual pagespacesize,S[VP ],

and the fundamental data type to use(i.e., 32-bit °oating point, 16-bit ¯xed point, etc.).

The virtual memory systemthen allocatesan initial physical memory bu®eron the GPU.

It also creates a page table, an inverse page table, a geometry engine, and a stack of

free pageson the CPU. The decision to place the aforementioned data structures on

the CPU is basedon the e±ciency concernsdescribed in Section 3.2.3 as well as GPU

architectural restrictions. These restrictions include: the GPU's lack of random write

accessto memory, lack of writable three-dimensional textures, lack of dynamically sized

output bu®ers,and limited GPU memory.

The pagetable is de¯ned to store a MemoryPageobject that contains the vertices and

texture coordinates required by the GPU to accessthe physical memory page. The inverse

page table is designedto store a VPN vector for each active physical page. Figure 3.2

shows thesemappings. Note that the pagetable and inversepagetable were referred to

as the unpacked map and packed map respectively in Lefohn et al. [29].

The vertices and texture coordinates stored in the MemoryPageobject are actually

pointers into the geometry engine. The geometry engine has the capability of quickly

rendering (i.e., processing)any portion of the physical memory domain. Thus the ge-

ometry engine must generate the substreamsfor the set of active physical pages. The

last initialization step is the creation of the free-pagestack. The virtual memory system

simply pushesall physical pages(i.e., pointers to MemoryPageobjects) de¯ned by the

geometry engineonto a stack.

The application issuesGPU physical memory allocation and deallocation requeststo

the virtual memory system. Upon receiving a virtual page request, the system pops a

physical pagefrom the free-pagestack, updatesthe pagetables, and returns a MemoryPage

pointer to the application. The reverseprocessoccurs when the application deallocates

a virtual memory page.
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The level-set solver generatesmemory pageallocation and deallocation requestsafter

each solver iteration basedon the form of the current solution. Section 3.3.5 describes

how the solver usesthe GPU to e±ciently create thesememory requests.

3.3 Streaming Narro w-Band GPU Level-Set Solver
This section explains how the GPU level-set solver implementation usesthe virtual

memory system described in Section 3.2 to create an e±cient streaming narrow-band

solver. The full details of the level-setequationsare not given here,but are instead found

in Appendix A.

3.3.1 Initialization of Computational Domain

The solver begins by initializing the sparsecomputational domain (Step 1 in Fig-

ure 2.1). An initial level-set volume is passedto the level-set solver by the level-set

application. The sparsedomain initialization involvesidentifying active memory pagesin

the input volume, allocating GPU memory for each active page, then sendingthe initial

data to the GPU (Figure 3.4).

The solver identi¯es active virtual pagesby checking each data element for a nonzero

derivative value in any of the six cardinal directions. If any element in a page contains

nonzeroderivatives, the entire page is activated. The initialization code then requestsa
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Figure 3.4. The level-set solver's use of the paged virtual memory system. All active
pages (i.e., those that contain nonzero derivatives) in the virtual page space (a) are
mapped to unique pagesof physical memory (b). The inactive virtual pagesare mapped
to the static inside or outside physical page. Note that the only data stored on the GPU
is that represented by (b).
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GPU memory page from the virtual memory system for each active page. The level-set

data is then drawn into GPU memory using the vertex locations in each MemoryPage

object.

This scheme is e®ective only becausethe input level-set volume is assumedto be a

clamped distancetransform|meaning that regionson or near the isosurfacehave nonzero

gradients while regionsoutsideor inside the surfacehavegradients of zero(seeFigure 3.5).

The outside voxels have a value of zero (black) and the inside oneshave a value of one

(white). The algorithm described in Section 3.3.2 describes how the clamped distance

transform is maintained during the level-set computation.

The inactive virtual pagesdo not need to be represented in physical memory. If an

active data element queriesan inactive value, however, an appropriate value needsto be

returned. Becauseall inactive regions are either uniformly black or white, the system

handles this boundary condition problem by de¯ning a special, inactive page state. A

virtual pagein this state is mapped to oneof two static physical pages.Oneof thesestatic

pagesis black, representing regionsoutside of the level-set surface. The other static page

is white and represents regionsinside the level-set surface. The pagetable contains these

many-to-one mappings, but the inversepage table does not store a valid entry for the

static pages.Note that this boundary problem could have alternativ ely beensolved using

single pixels instead of entire pages; however, this lack of uniformit y in memory page

sizeswould have complicated the pagetable representations. Alternativ ely, the problem

Outside

Inside

f

Distance from Isosurface

Active

0

Figure 3.5. The level-set embedding, Á, is a clamped distance transform, i.e., jr Áj is
nonzeronear the surfacemodel and zero elsewhere.
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could have beensolved by creating substreamsfor the active elements on the boundary

of the active set; however, this would have unnecessarilyadded a number of additional

substreamrender passesto the computation.

3.3.2 The Distance Transform Computation on the GPU

The GPU-basedlevel-setsolver borrows ideasfrom both the narrow-band and sparse-

¯eld algorithms, but implements a new solution that conforms to the architectural re-

strictions of GPUs. Both of these previous, CPU-based, methods maintain a distance-

transform embedding (i.e., managelevel-set density) by a seriesof heterogeneousopera-

tions that are not particularly e±cient on the GPU. In order to solve this problem, the

streaming level-set method maintains a distance-transform embedding by intro ducing an

additional speedterm Gr into the level-setPDE Equation 2.3. This additional speedterm

pushesthe level sets of Á, either closer together or farther apart, so that they resemble

an appropriately scaled clamped distance transform (CDT). The CDT has a constant

level-set density within a prede¯ned band and ensuresthat voxels near the isosurface

have ¯nite derivatives while those farther away have gradient magnitudes of zero. As

described in the proceedingsection, the identi¯cation of zero-derivative regionsis critical

for an e±cient solver implementation. This rescaling speedterm, Gr , is computed as

Gr = ÁgÁ ¡ Ájr Áj; (3.2)

wheregÁ is the target gradient magnitude within the computational domain. This target

parameter is set based on the numerical precision of the level-set data. By setting gÁ

su±ciently high, numerical errors caused by under°ow can easily be avoided. It is

important to note that Gr is strictly a numerical construct; it doesnot a®ectthe movement

of the zero level set, i.e., the surface model. This embedding-rescalingcomputation is

similar to the technique discussedin Fedkiw et al. [12].

In conclusion,Equation 3.2hasthe following three properties. First Gr is proportional

to Á (i.e., Gr approacheszeroasÁ approacheszero), and thereforeadding Gr to the speed

terms in the level-set computation will not move the level-set surface(assumingk = 0).

Second,becausethe up-wind scheme [34] maintains monotonicity in the embedding, no

new extrema will be created. As such, the clamping properties of the original embedding

will be maintained. Lastly the ¯xed point of Gr is the distance transform scaledby gÁ.
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3.3.3 Level-Set Computation

The GPU next computes the level-set computation (Step 2 of the sparsealgorithm,

Figure 2.1). The details of the level-set discretization used by the level-set solver are

given in Appendix A. This section gives a high-level overview of the computation. The

level-set update proceedsin the following steps:

A Compute 1st and 2nd partial derivatives.

B Compute N level-set speedterms.

C Update level-set PDE.

The derivativepassesin StepA aboveusethe substream-based,virtual-to-ph ysical ad-

dressschemedescribed in Section3.2.3. The derivativesare computed in nine substream

passes,each of which outputs to the samefour bu®ers.The speedfunction computations

in Step B are application-dependent. Example speedterms include the curvature compu-

tation described in Equation 2.4, the rescaling term described in Equation 3.2, and the

data-dependent term described in Equation 4.1. There will be zeroor more render passes

for each speed function. The level-set update (Step C) is simply the up-wind scheme

described in Appendix A, which is computed in a single pass. Note that additional GPU

memory must be allocated to store the intermediate results accumulated in StepsA and

B before they are consumedin Step C. The solver also performs register allocation of

temporary bu®ersto minimize GPU memory usage.

3.3.4 GPU Implemen tation Details

The level-set solver and volume renderer are implemented in programmable graphics

hardware using vertex and fragment programs on the ATI Radeon 9800 GPU. The

programs are written in the OpenGL ARB vertex program and ARB fragment program

assembly languages.

Several details related to render passoutput bu®ersare critical to the performanceof

the level-set solver. First is the abilit y to output multiple, high-precision 4-tuple results

from a fragment program. Writing 16 scalaroutputs from a singlerender passenablesthe

solver to perform the expensive three-dimensionalneighborhood reconstruction only once

and usethe gathereddata to compute the derivativesin a single pass. Second,the solver

avoids the expensive changebetweenrender targets [23] (i.e., pixel bu®ers)by allocating

a single pixel bu®er with many render surfaces (front, back, aux0, etc.) and using each

surfaceas a separateoutput bu®er.
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Lastly, there is a subtle speed-versus-memorytrade-o®that must be carefully consid-

ered. Becausethe physical-memorytexture can be as large as20482, storing intermediate

results (e.g., derivatives, speedvalues, etc.) during the computation can require a large

amount of GPU memory. This memory requirement can be minimized by performing the

level-set computation in subregions.The intermediate bu®ersmust then be only the size

of the subregion. This partitioning does reduce computational e±ciency; however, and

so the subregionsare madeas large as possible. The solver currently use5122 subregions

when the level-set texture is 20482 and usea single region when it is smaller.

3.3.5 Up date of Computational Domain

After each level-set update, the solver determines which virtual pages need to be

added-toor removed-from the activedomain. The solver accomplishesthis by aggregating

gradient information from all elements in each active page. The GPU must compute this

information becausethe level-set solution exists only in physical memory. The active set

must be updated by the CPU, however, becausethe pagetable and geometryengineexist

in CPU main memory. In addition, the amount of information passedfrom the GPU to

the CPU must be kept to a minimum becauseof the limited bandwidth between the

two processors.This section gives an overview of an algorithm that works within these

constraints. Appendix B explains the full details of the algorithm.

The GPU creates a memory allocation/deallocation request by producing a small

image (of sizeS[GP ]) with a single-byte pixel per physical page. The value of each pixel

is a bit code that encapsulatesthe activation or deactivation state of each pageand its six

adjacent neighbors (in VP). The CPU readsthis small (< 64kB) message,decodesit, and

submits the allocation/deallocation requeststo the virtual memory system(Figure 3.6).

The GPU createsthe bit-code imageby ¯rst computing two, four-component neighbor

information bu®ers of size S[G] (Step A of Figure 3.6). This computation uses the

previously-computed, one-sidedderivativesof Á to identify the required active pages. A

page must be activated if it contains elements with nonzero gradient magnitudes. The

automatic mipmapping GPU feature is used to down-sample the resulting bu®ers(i.e.,

aggregatedata samples)to the page-spaceimage (Step B in Figure 3.6). The ¯nal GPU

operation combinesthe activepageinformation into the bit code(Step C in Figure 3.6). A

fragment program performsthis stepby emulating a bit-wise OR operation via conditional

addition of powers of two. Finally, in step D of Figure 3.6, the CPU reads this message
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Figure 3.6. The GPU's creation of a memory allocation/deallocation request. Step A
usessolver-speci¯c data to create two bu®erscontaining the active state of each data
element and its adjacent neighbors. Step B usesautomatic mipmapping to reduce the
bu®ers from size S[G] to the physical page space size, S[GP ]. Step C combines the
information from the two down-sampled state bu®ers into an eight-bit code for each
pixel. This code encapsulateswhether or not each active virtual memory page and its
adjacent neighbors should be enabled. In step D, the CPU reads the bit-code bu®er,
decodes it, and allocates/deallocatespagesas requested.

from the GPU.

Note that the useof automatic mipmapping placessomerestrictions on the maximum

tile sizedue to quantization rounding errors that arise when down-sampling 8-bit values.

This limitation can be relaxed by using a 16-bit ¯xed-p oint data type. Alternativ ely,

°oating-p oint values can be used if the down-sampling is performed with fragment pro-

gram passesinstead of automatic mipmapping.

3.4 Volume Rendering of Packed Data
The direct visualization of the level set evolution is important for a variety of level-set

applications. For instance, in the context of segmentation, direct visualization allows

a user to immediately assessthe quality and accuracy of the pending segmentation

and steer the evolution toward the desired result. Volume rendering [10, 31, 42] is a

natural choice for visualizing the level-set surfacemodel, becauseit does not require an

intermediate geometric extraction, which might limit interactivit y. If one were to use
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marching cubes, for instance, a distinct triangle mesh would need to be created (and

rendered) for each iteration of the level-set solver. The implemented solver, therefore,

includes a volume renderer, which produces a full three-dimensional (transfer-function

based)volume rendering of the evolving level set on the GPU [22].

For rendering the evolving level-set model, the new renderer use a variant of tradi-

tional two-dimensional texture based volume rendering [6]. The renderer modi¯es the

conventional approach to render the level-set solution directly from the packed physical

memory layout, which is physically stored in a single two-dimensional texture. Because

the level-set data and physical page con¯gurations are dynamic, it would be ine±cient

to precompute and store the three separate versions of the data, sliced along cardinal

views, as is typically donewith two-dimensionaltexture approaches. Instead the renderer

reconstructs theseviews each time the volume is rendered. Note that this new technique

also enablesvolume rendering from a dataset stored in a single set of two-dimensional

slices.

The volume rendering algorithm utilizes a two passapproach for reconstruction and

rendering. Figure 3.7 illustrates the steps involved. An additional o®-screenbu®er

caches two reconstructed neighboring slices containing the level set solution and its

gradient (Figure 3.7 A). During the rendering phasearbitrary slicesalong the preferred

slice direction are interpolated from these neighboring slices (Figure 3.7 B). Once all

interpolated slicesbetweenslice i and i ¡ 1 are renderedand composited, the next slice

(i + 1) is reconstructed. This newly reconstructed slice replacesthe cached slice, i ¡ 1.

The GPU then renders and composites the interpolated slices(i.e., those between slice

i + 1 and i ). This pattern continuesuntil all sliceshave beenreconstructedand rendered.

When the preferred sliceaxis, basedon the viewing angle, is orthogonal to the virtual

memory page layout, the renderer reconstructs two-dimensional slices of the level set

solution and its gradient using a textured quadrilateral for each page, as shown in

Figure 3.8 A. On the other hand, if the preferred slice direction is parallel to the virtual

page layout, the algorithm renders a row or column from each page using textured line

primitiv es, as in Figure 3.8 B. In both cases,slicesare reconstructed into a pixel bu®er

which is bound as a texture in the rendering pass. Theseslicesare reconstructed at the

same resolution as level set solution. For e±ciency, the renderer reusesdata wherever

possible. For instance, lighting for the level-setsurface,evaluated in the rendering phase,

usesgradient vectors computed during the level-set update stage.
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Figure 3.7. Two passrendering of packed volume data. In step A, a two-dimensional
slice (i ) is reconstructed from the physical page (packed) layout, GP . In step B, one or
more intermediate slicesbetween i and i ¡ 1 are interpolated, transformed into optical
properties (via the transfer function), lit, and rendered for the current view. The next
iteration beginsby reconstructing slice i + 1, replacing i ¡ 1, and so on.

A

B
Pixel Buffers

Level Set Data

Figure 3.8. Reconstruction of a slice for volume rendering the packed level-set model:
(a) When the preferred slicing direction is orthogonal to the virtual memory pagelayout,
the pages(shown in alternating colors) are draw into a pixel bu®eras quadrilaterals. (b)
For slicing directions parallel to the virtual pagelayout, the pagesare drawn onto a pixel
bu®eras either vertical or horizontal lines.
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In the rendering phase, the algorithm leveragesthe hardware's bilinear ¯ltering for

in-plane interpolation of the reconstructed level set slice. Trilinear interpolation of an

arbitrary slice between two adjacent reconstructed slices is accomplishedby combining

them, i.e. performing linear interpolation along the preferred slice direction, in the

fragment program. This same fragment program also evaluates the transfer function

and lighting for the interpolated data.



CHAPTER 4

SEGMENT ATION APPLICA TION

4.1 In tro duction
Segmentation is an important part of volume visualization and analysis. In the

IEEE Visualization 2002panel entitled \V olume Renderingin Medical Applications", Bill

Lorensenof General Electric Research and Development made an important observation

about volume rendering: \Its time to move beyond prett y pictures and move more toward

image analysis." With the rising importance of quantitativ e volume analysis, will come

an increasedrole for tools that utilize visualization to achieve better quantitativ e results.

This chapter describes such a tool; an interactive volume segmentation and visu-

alization application that uses the GPU-based level-set solver and volume rendering

techniques described in Chapter 3. Section 4.2 describes the details of the application,

while Section 4.3 presents a performanceanalysis of the system. Section 4.4 presents a

user study usesthat evaluates the e®ectivenessof the interactive segmentation tool for

medical segmentation.

4.2 Volume Segmentation and Visualization
Application

4.2.1 Level-Set Form ulation for Segmentation

For segmenting volumedata with level sets,the speedusually consistsof a combination

of two terms [32, 56]

@Á
@t

= jr Áj
·
®D(¹x) + (1 ¡ ®)r ¢

r Á
jr Áj

¸
; (4.1)

where D is a data term that forces the model to expand or contract toward desirable

features in the input data (which is also called the source data), the term r ¢(r Á=jr Áj)

is the mean curvature H of the surface, which forces the surface to have lessarea (and

remain smooth), and ® 2 [0; 1] is a free parameter that controls the degreeof smoothness

in the solution.
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This combination of a data-¯tting speed function with the curvature term is critical

to the application of level setsto volume segmentation. Most level-setdata terms D from

the segmentation literature are equivalent to well-known algorithms such as isosurfaces,

°ood ¯ll, or edgedetection when used without the smoothing term (i.e., ® = 1). The

smoothing term alleviates the e®ectsof noise and small imperfections in the data, and

can prevent the model from leaking into unwanted areas(Figure 4.1). In the context of

volume analysis,the level-setsurfacemodelsprovide several capabilities that complement

volumerendering: local, user-de¯nedcontrol; smooth surfacenormals for better rendering

of noisy data; and a closedsurfacemodel, which can be usedin subsequent processingor

for quantitativ e shape analysis.

For the work in this thesis the segmentation application usesa simple speedfunction

to demonstrate the e®ectivenessof interactivity and real-time visualization in level-set

solvers. The speed function created for this work depends solely on the greyscalevalue

input data I at the point ¹x:

D (I ) = ² ¡ jI ¡ T j; (4.2)

whereT controls the brightnessof the region to be segmented and ² controls the rangeof

greyscalevaluesaround T that could be consideredinside the object. In this way a model

situated on voxels with greyscalevaluesin the interval T § ² will expand to enclosethat

voxel, whereasa model situated on greyscalevaluesoutside that interval will contract to

excludethat voxel. The speedterm is gradual, asshown in Figure 4.2, and thus the e®ects

of the D diminish asthe model approachesthe boundariesof regionswith greyscalelevels

within the T § ² range,and the e®ectsof the curvature term will be relatively larger. This

(a) (b) (c)

Figure 4.1. The use of a curvature constraint (speed function) in the level-set
computation to prevent segmentation \leaking." This example shows one slice of a
three-dimensionalMRI segmentation computation: (a) The spherical initialization. (b) A
model expandsto ¯ll the tumor but leaksthrough gapsand expandsinto other anatomy.
(c) The samescenariowith a degreeof curvature prevents unwanted leaking. The level
set isosurfaceis shown in white.
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Figure 4.2. A speedfunction basedon image intensity causesthe model to expand over
regionswith greyscalevalueswithin the speci¯ed range and contract otherwise.

choice of D corresponds to a simple, one-dimensionalstatistical classi¯er on the volume

intensity [28].

To control the model a user speci¯es three free parameters,T, ², and ®, as well as an

initialization. The user generally draws a spherical initialization inside the region to be

segmented. Note that the user can alternativ ely initialize the solver with a preprocessed

(thresholded, °ood ¯lled, etc.) version of the sourcedata.

4.2.2 In terface and Usage

The application in this thesisconsistsof a graphical user interface(GUI) that presents

the user with two slice viewing windows, a volume renderer, and a control panel (Fig-

ures 4.3 and 4.4). Many of the controls are duplicated throughout the windows to allow

the user to interact with the data and solver through these various views. Two and

three-dimensional representations of the level-set surfaceare displayed in real time as it

evolves.

The ¯rst two-dimensionalwindow displays the current segmentation as a yellow line

overlaid on top of the source data. The second two-dimensional window displays a

visualization of the level-setspeedfunction that clearly delineatesthe positive (blue) and

negative (black) regions. The ¯rst window can be probed with the mouseto accomplish

three tasks: set the level set speed function, set the volume rendering transfer function,

and draw three-dimensionalspherical initializations for the level-set solver. The ¯rst two
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Figure 4.3. A depiction of the user interface for the volume analysis application. Users
interact via slice views, a three-dimensional rendering, and a control panel.

Figure 4.4. The actual user interface for the volume analysis application. The top left
window shows the visualization of the speed function. The top right window shows a
slice of the MRI sourcedata with the current level-set solution in yellow. The lower-left
window shows a volume rendering of the MRI sourcedata (blue), the samedata projected
onto a clipping plane (grey), the current level-set surface (brown), and the intersection
of the current level-set solution with the clipping plane (yellow).
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are accomplishedby accumulating an averageand variance for values probed with the

cursor. In the caseof the speed function, the T is set to the average and ² is set to

the standard deviation. Userscan modify these values, via the GUI, while the level set

deforms. The spherical drawing tool is usedto initialize and/or edit the level-set surface.

The user can place either white (model on) or black (model o®) spheresinto the system.

The volume renderer displays a three-dimensionalreconstruction of the current level-

set isosurface(seeChapter 3.4) aswell asthe input data. In addition, an arbitrary clipping

plane, with texture-mapped sourcedata, can be enabledvia the GUI (Figure 4.4). Just

as in the slice viewer, the speed function, transfer function, and level-set initialization

can be set through probing on this clipping plane. The crossingof the level-set isosurface

with the clipping plane is also shown in bright yellow.

The volume renderer usesa two-dimensional transfer function to render the level set

surfaceand a three-dimensionaltransfer function to render the sourcedata. The level-set

transfer function axesare intensity and distancefrom the clipping plane (if enabled). The

transfer function for rendering the original data is basedon the sourcedata value, gradient

magnitude, and the level-setdata value. The latter is included sothat the level set model

can function as a region-of-interest speci¯er. All of the transfer functions are evaluated

on-the-°y in fragment programs rather than in lookup tables. This approach permits

the useof arbitrarily high-dimensional transfer functions, allows run-time °exibilit y, and

reducesmemory requirements [23]. The GUI hasadditional controls for starting/stopping

the solver, enabling a region-of-interest volume rendering mode, setting opacity of the

volume and clipping plane, and saving the three-dimensionalsegmentation to ¯le.

The interactive level-setsolver and volume rendering systemis demonstratedwith the

following three data sets: a brain tumor MRI (Figure 4.5, 4.6), an MRI scanof a mouse

(Figure 4.7), and transmission electron tomography data of a gap junction (Figure 4.8).

In all of these examplesa user interactively controls the level-set surfaceevolution and

volume rendering via the multiview interface. The initializations for the tumor and

mousewere drawn via the user interface while the gap junction solution was seededwith

a thresholded version of the sourcedata.
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Figure 4.5. Interactive level-set segmentation of a brain tumor from a 256£ 256£ 198
MRI with volume rendering to give context to the segmented surface. A clipping plane
(bottom) shows the user the sourcedata, the volume rendering, and the segmentation
simultaneously. The segmentation and volume rendering parametersare set by the user
probing data valueson the clipping plane.
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Figure 4.6. Interactive level-setsegmentation of the cerebralcortex from a 256£ 256£ 198
MRI with volume rendering to give context to the segmented surface. The MRI data is
also projected onto a clipping plane, on which the user can probe to control the level-set
parameters.
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Figure 4.7. The top image shows a volume rendering of a 2563 MRI scan of a
mouse thorax. Note the level set surface which is deformed to segment the liver. The
bottom image shows a volume rendering of the vasculature inside the liver. Both images
are rendered using the same transfer function with the level-set surface serving as a
region-of-interest speci¯er.
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Figure 4.8. Segmentation and volume rendering of 512£ 512£ 61 three-dimensional
transmission electron tomography data. The picture shows cytoskeletal membrane
extensions and connexins (pink surfacesextracted with the level-set models) near the
gap junction betweentwo cells (volume renderedin cyan).
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4.3 Performance Analysis
The GPU-based level-set solver achieves a speedup of 10{15 times over a highly-

optimized, sparse-¯eld, CPU-based implementation [52]. The user study presented in

Section 4.4 demonstrates that the new solver runs interactive rates for the tumor seg-

mentations performed in the study. Interactivit y is de¯ned here as being fast enough

that the segmentation times are almost entirely basedon user time rather than solver

time. Alternativ ely, usersgenerally regard a solver running at rates greater than steps

per secondas interactive.

All benchmarks were run on an Intel Xeon 1.7 GHz processorwith 1 GB of RAM

and an ATI Radeon9800Pro GPU. All timings include the complete computation, i.e.,

both the virtual memory systemupdate and the level-set computation are included. For

a 256£ 256£ 175 volume, the level-set solver runs at rates varying from 70 steps per

secondfor the tumor segmentation to 3.5 stepsper secondfor the ¯nal stagesof the cortex

segmentation (Figure 4.5). In contrast, the CPU-based,sparse¯eld implementation ran

at 7 stepsper secondfor the tumor and 0.25stepsper secondfor the cortex segmentation.

The speedof the solver is approximately 80% dependent on the core clock rate of the

GPU, 15% dependent on the GPU's memory speedand only 5% dependent on the speed

of the AGP bus. These dependency measureswere obtained by measuring the solver's

computation rate while changing the GPU's core and memory clock speeds[51] and by

changing the speedof the AGP bus. Theseand other pro¯ling techniques are described

by NVIDIA [9]. Note that the 80%dependenceon coreclock speedand 15%dependence

on memory speedindicate that the speedof the solver will continue to improve as GPUs

increasein speedand/or add additional computational elements.

The speedof the solver is bound almost entirely by the fragment stage of the GPU.

In addition, the speed of the solver scaleslinearly with the number of active voxels in

the computation. Creation of the bit vector messageconsumesapproximately 15%of the

GPU arithmetic and texture instructions, but for most applications the speedup over a

denseGPU-basedimplementation far eclipsesthis additional overhead.

The amount of texture memory required for the level-set computation is proportional

to the surfacearea of the level-set surface|i.e., the number of active pages. Tests have

shown that for many applications, only 10%-30%of the volume is active. To take full

advantage of this savings, the total sizeof physical memory, S[G], must increasewhen the

number of allocated pagesgrows beyond the capacity of the currently allocated physical
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memory. The current implementation performs only static allocation of the maximum

physical memory space,but future versionscould easily realizethe abovememory savings.

Chapter 5 discusseschangesto GPU display driversthat will facilitate the implementation

of this feature.

In comparison to the depth-culling-based sparsevolume computation presented by

Sherbondy et al. [47], the packing scheme presented herein guarantees that very few

wastedfragments aregeneratedby the rasterization stage. This is especially important for

sparsecomputations on largevolumes|where the rasterization and culling of unusedfrag-

ments could consumea signi¯cant portion of the execution time. In addition, the packing

strategy can processthe entire active data set simultaneously, rather than slice-by-slice.

This improves the computationally e±ciency by taking advantage of the GPU's deep

pipelines and parallel execution. The packing algorithm should also be able to process

larger volumes, due to the memory savings discussedabove. The packing algorithm,

however, does incur overhead associated with maintaining the packed tiles, and more

experimentation is necessaryto understand the circumstancesunder which each approach

is advantageous. Furthermore, they are not mutually exclusive, and Chapter 5 discusses

the possibility of using depth culling in combination with the packed representation.

4.4 Tumor Segmentation User Study
4.4.1 In tro duction

This section presents a evaluation study of the GPU-based level-set segmentation

application [7, 27]. More than simply evaluating the GPU-basedtool with respect to CPU-

basedapplications, the study shows that the combination of interactivit y, visualization,

and level-set computation createsa tool that is more generaland faster than previously

existing options.

The purposeof the user study was to determine if the new level-set solver systemcan

produce volumetric delineations of brain tumor boundariescomparableto those done by

experts (e.g., radiologistsor neurosurgeons)using traditional hand-contouring. The GPU-

basedsegmentation application is applied to the problem of brain tumor segmentation

using data from the Brain Tumor Segmentation Database, which is made available by

the Harvard Medical School at the Brigham and Women'sHospital (HBW) [19, 54]. The

HBW databaseconsistsof 10 three-dimensional1.5T MRI brain tumor patient datasets

selectedby a neurosurgeonasa representativ e sampling of a larger clinical database. For
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each of the 10 cases,there are also four independent expert hand segmentations of one

randomly selectedtwo-dimensionalslice in the region of the tumor.

The userstudy consistsof nine tumor cases:three meningioma(cases1-3) and six low

grade glioma (4-6, 8-10). One case,number 7, was omitted becausea quick inspection

showedit that its intensity structure wastoo complicatedto besegmented by the proposed

tool|suc h a problem remains as future work. The data used in the study was not

preprocessed, and there are no hidden segmentation parameters|all system parameters

were set by the usersin real time, as they interacted with the data and the models.

Five userswereselectedfrom amongUniversity of Utah sta®and students and trained

brie°y to use the software. Each user was asked to delineate the full, three-dimensional

boundaries of the tumor in each of the nine selectedcases. The users were given no

time limit and their time to complete each tumor segmentation was recorded. None of

the participating userswere experts in reading radiological data. The goal of the study

was not to test for tumor recognition (tissue classi¯cation), but rather to test whether

parameterscould be selectedfor the segmentation algorithm to produce a segmentation

which mimics those done by the experts. To control for tumor recognition, we allowed

each user to refer to a single slice from an expert segmentation. Userswere told to treat

this hand segmentation slice as a guide for understanding the di®erencebetween tumor

and nontumor tissue. The underlying assumption is that an expert would not needsuch

an example.

4.4.2 Metho dology

The study considersthree factors in evaluating the newsegmentation tool [53]: validit y

of the results (accuracy), reproducibilit y of the results (precision), and e±ciency of the

method (time). To quantify accuracy a ground truth is establishedfrom the expert seg-

mented slicesusing the STAPLE method [55]. This method is essentially a sophisticated

averaging schemethat accounts for systematic biasesin the behavior of experts in order

to generate a fuzzy ground truth (W) for each case. The ground truth segmentation

values for each caseare represented as an image of values between zero and one that

indicates the probabilit y of each pixel being in the tumor. The STAPLE method also

gives sensitivity and speci¯cit y parameters (p and q respectively) for each expert and

each case.Sensitivity is the fraction of pixels correctly classi¯ed as lying inside the object

boundary, and speci¯cit y is the fraction of pixels correctly classi¯ed as lying outside the
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object boundary. Each subject generatesa binary segmentation which, comparedagainst

the ground truth, givesvalues to obtain p and q for that subject. A third metric is also

consideredfor the analysis, total correct fraction which is the total number of correctly

classi¯ed pixels (weighted by W) as a percentage of the total sizeof the image.

To assessinteroperator precisionin segmentations, the study usesthe metric proposed

by [53], which consistsof pairwise comparisonsof the cardinalit y of the intersection of the

positive classi¯cations divided by the cardinalit y of the union of positive classi¯cations.

To analyzee±ciency, the study calculatesthe averagetotal time (user time plus processing

time) taken for a segmentation.

4.4.3 Results

For a typical segmentation of a tumor using the new tool a user scrolls through slices

until they ¯nd the location of the tumor. With a mouse,the userqueriesintensity values

in the tumor and sets initial values for the parametersT and ² basedon those intensity

values. They initialize a sphere near or within the tumor and initiate deformation of

that spherical model. As the model deforms the user scrolls through slices, observing

its behavior and modifying parameters. Using the immediate feedback they get on the

behavior of the model, they continue modifying parameters until the model boundaries

appear to align with thoseof the tumor. In a typical 5-minute session,a userwill modify

the model parametersbetween10 and 30 times.

Figures 4.9, 4.10, and 4.11 show graphs of averagep, q, and c values for the experts

and the usersin the study. Error bars represent the standard deviations of the associated

valuesfor the experts and the usersin the study.

The performanceof the experts and the usersvaries caseby case,but in almost all

casesthe performanceof the userswas within the range of performancesof the experts.

The average correct fraction of the users was better than the experts in 4 out of 9

cases.A generaltrend is that the participating userstended to underestimate the tumor

relative to the experts, as indicated by lower values of p. This is consistent with other

experienceswith hand segmentations and level-set models|with hand contouring users

tend to overestimate structures, and with level sets the curvature term tends to reduce

the sizeof convex structures [8].
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Figure 4.9. Sensitivity (the fraction of pixels correctly classi¯ed as inside the object
boundary) results from the user study compare the interactive, GPU-based level-set
segmentation tool with expert hand contouring. The results show that users of the
semi-automatic tool produced segmentations that were within the error bounds of the
expert hand contours in most cases. The tool also showed an overall slightly lower
sensitivity, meaning that the sizeof the segmentations is slightly smaller.
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Figure 4.10. Speci¯cit y (the fraction of pixels correctly classi¯ed as outside the object
boundary) results from the user study compare the interactive, GPU-based level-set
segmentation tool with expert hand contouring. The results show that users of the
semiautomatic tool produced segmentations that were within the error bounds of the
expert hand contours in most cases. The tool also showed an overall slightly higher
speci¯cit y, meaning that the sizeof the segmentations is slightly smaller.
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Figure 4.11. The total fraction of correctly classi¯ed pixels (combination of sensitivity
and speci¯cit y) for the nine tumor casessegmented by the participating users.



46

The segmentations in the user study show a much higher degreeof precision than

the expert hand segmentations. Mean precision [53] across all users and caseswas

94:04%§ 0:04%while the meanprecisionacrossall experts and caseswas82:65%§ 0:07%.

Regarding e±ciency, the averagetime to complete a segmentation (all users, all cases)

was 6 § 3minutes. Only 5%¡ 10% of this time is spent processingthe level-set surface.

This compares favorably with the 3-5 hours required for a typical three-dimensional

segmentation done by hand.

The accuracy and precision of subjects using the new tool compareswell with the

automated brain tumor segmentation results of Kaus, et al. [19], who usea supersetof the

samedata usedin the study. They report an averagecorrect volume fraction of 99:68%§

0:29%, while the averagecorrect volume fraction obtained by the participating userswas

99:78%§ 0:13%. Their method required similar averageoperator times (5-10minutes), but

unlike the proposedmethod their classi¯cation approach required subsequent processing

times of approximately 75 minutes. That method, like many other segmentation methods

discussedin the literature, includes a number of hidden parameters,which were not part

of their analysis of timing or performance.

Thesequantitativ e comparisonswith experts pertain to a only single two-dimensional

slice that was extracted from the three-dimensional segmentations. This is a limitation

due to the scarcity of expert data. Experienceshows that computer-aided segmentation

tools perform relatively better for three-dimensionalsegmentations becausethe hand con-

tours typically show signsof interslice inconsistenciesand fatigue. Figures 4.12 and 4.13

respectively show a segmentation by an expert with hand contouring and a segmentation

done by one of the usersof the GPU-basedlevel-set segmentation tool.
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Figure 4.12. An expert hand segmentation of a tumor from the Harvard Brigham and
Women's databaseshows signi¯cant interslice artifacts.

Figure 4.13. A three-dimensional segmentation of the same tumor from one of the
subjects in the userstudy performed using the interactive segmentation tool described in
this thesis.



CHAPTER 5

CONCLUSIONS

5.1 Summary
This thesis demonstratesa new tool for interactive volume exploration and analysis

that combines the quantitativ e capabilities of deformable isosurfaceswith the qualitativ e

power of volume rendering. By e±ciently leveraging programmable graphics hardware,

the level-set solver operates approximately 15 times faster than previous solutions and

is therefore interactive for moderately sized volumes (e.g., 1283{2563). This mapping

relies on an e±cient multidimensional virtual memory system to implement a time-

dependent, sparsecomputation scheme. The memory mappings are updated via a novel

GPU-to-CPU messagepassingalgorithm. The GPU renders the level-set surfacemodel

directly from this packed texture format. This new rendering technique also enablesfull

volume rendering from volume data stored as a single set of two-dimensionalslices. The

interactive segmentation tool is evaluated by meansof a brain tumor segmentation user

study. The study shows that, when compared to the segmentations produced by expert

hand contouring, users of the new tool are able to quickly produce more precise and

equivalently accurate segmentations.

5.2 Future Work
Future extensions and applications of the level-set solver include the processingof

multiv ariate data as well as the application of the solver to other level-set problems.

Examples include surface reconstruction, surface processing, and surface tracking in

computational °uid dynamics simulations. Many of these extensions involve changing

only the speedfunctions. Additions to the user interface, such as three-dimensionalpaint

operations into the parameter volumes, may also enable an additional level of control

over the computation. Additionally , the systemdescribed in this thesis enforcesmemory

coherenceat the granularit y of a 16£ 16memory page. This property might be interesting

to apply to CPU-basedsparsecomputations. The local memory accesspatterns, lack of
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conditionals, and absenceof pointer dereferencesmight result in a CPU-based solution

that outperforms current sparse-¯eld methods.

There are multiple improvements that could be made to the memory and computa-

tional e±ciency of the solver. First, it may be worth achieving an even narrower band of

computation around the level-set model. This is possibleby using depth culling to avoid

computation on inactive elements within each active page[47]. Implementing this depth

culling requiresa GPU memory model in which an arbitrary number of data bu®erscan

accessa single depth bu®er. The secondoptimization is to allow the total amount of

available physical memory to changeat run time and grow to the limits of GPU memory.

This requires spreading physical memory acrossmultiple two-dimensional textures (i.e.,

creating a three-dimensional physical memory space). The proposed super bu®er [37]

OpenGL extensionsupports both of theseproposedoptimizations.

The GPU virtual memory abstraction also indicate promising future research. I am

currently beginning work on a more general virtual memory implementation that fully

abstracts N -dimensional GPU memory. The goal is to provide an API that allows a

GPU application programmer to specify an optimal physical and virtual memory layout

for their problem, then write the computational kernelsirrespectiveof the physical layout.

The kernelswill specify memory accessesvia abstract memory accessinterfaces,and an

operating-system-like layer will replace these memory accesscalls with the appropriate

address translation code. This layer should also optimize computational kernels by

automatically mapping portions of the kernel to the vertex processorand rasterizer,

generatesubstreamswhere appropriate, and perform other optimizations.

This thesis presents an e®ective solution for solving time-dependent narrow-band

partial di®erential equations on the GPU. As the emerging ¯eld of general purpose

computation on GPUs (GPGPU) movesforward, oneof the most challengingquestionsis,

\Ho w generalshould the programming model become?" It is inevitable and desirablethat

the programming model for GPUs be lifted to a higher level. It is also critical, however,

that the forthcoming abstractions not hinder e®ective use of the underlying hardware.

For example, the fully generalmultidimensional virtual memory schemeproposedabove

may already be too general to guarantee e±cient program execution. It is possiblethat

the best high-level GPU programming solution will be domain-speci¯c infrastructures

(e.g., a framework for solving discrete partial di®erential equations). It is also possible,

however, that a highly-optimizing programming languageor framework for GPUs can be
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de¯ned by precisely de¯ning the inherent restrictions required for e±cient computation

on streaming architectures.



APPENDIX A

DISCRETIZA TION OF THE LEVEL-SET

EQUA TIONS

A.1 In tro duction
This appendix describes the discretization of equation 2.3 and the curvature com-

putation. Equation 2.3 is discretized using the up-wind scheme [34] and compute the

curvature of the level-set surfaceusing the di®erence of normals method [58].

A.2 Level-Set Discretization
To begin Equation A.1 describes the ¯nite di®erencederivatives required for the

level-set update and curvature computation. The neighborhood, u, from which these

derivativesare computed is speci¯ed with the numbering scheme

6 7 8
3 4 5
0 1 2

: (A.1)

Note that 4 denotesthe center pixel, and u§ z
i represents the i th sampleon the sliceabove

or below the current one. The derivativesof the level-set embedding, Á, are then de¯ned

as
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(A.2)

Curvature is then computed using the above derivatives. The two normals, n+ and

n ¡ , are computed by
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and
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respectively. The components of the divergencefrom equation 2.4 are then computed as

@nx

@x
= n+

x ¡ n ¡
x ; (A.5)

@ny

@y
= n+

y ¡ n ¡
y ; (A.6)

and
@nz

@z
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z ; (A.7)

Finally, Equation A.8 estimatesH :
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The upwind approximation to r Á is then computed using D +
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is computed followed by
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The ¯nal choice of r Á is de¯ned by

r Á =
½

kr Ámaxk2 if F > 0
kr Ámink2 otherwise

; (A.11)

whereF is the linear combination of all speedfunctions (e.g. meancurvature, the rescaling

term Gr , etc). Section 4.2.1 describesthe speedterms usedin the level-set segmentation

application.

The last step in the upwind schemecomputesÁ(t + 4 t) by

Á(t + 4 t) = Á(t) + 4 tF jr Áj: (A.12)



APPENDIX B

A BR UTE-F OR CE, GPU-BASED

THREE-DIMENSIONAL

LEVEL-SET SOLVER

B.1 Design
This appendix covers the designof a brute-force, GPU-basedthree-dimensionallevel-

set solver designedfor the ATI Radeon 8500 GPU. The solver computes the level-set

PDE (seeAppendix A at each voxel, i.e., it is not a narrow-band solver. The solver also

includessegmentation speedfunctions described in Section4.2, including the second-order

curvature term.

The level-set volume is stored in a set of two-dimensional slices (i.e., pbu®er tex-

tures). This memory arrangement is dictated by the fact that GPUs support only

two-dimensional output bu®ers. As such, the PDE computation is performed on a

slice-by-slice basis. Memory usageis slightly optimized by packing the scalar slicesinto

the RGB channelsof the RGBA pbu®ers. In addition to saving texture memory, this also

reducesthe number of costly render target swaps by a factor of three.

B.1.1 Computation Overview

The three-dimensional solver requires seven render passesper slab to compute the

mean curvature, and a total of 16 render passesper slab to compute an entire time step

update. For a 256x256x175 data set, this meansthat 2800render passesare required to

update the entire volume a single PDE time step. Pseudocode for the solver is shown

below, using function-call-lik e syntax to represent render passes.The partitioning of the

computation into render passesis dictated by the number of available texture inputs,

temporary registers,and fragment program instructions.

for(int t=0; t < numSteps; t++) {

for(int z=0; z < numSlabs; z++) {
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// Compute two sets of 4-vec derivatives

Tex2D d1 = deriv1( phi[z] ); // 1

Tex2D d2 = deriv2( phi[mz], phi[pz] ); // 2

// ComputeCurvature

Tex2D d3 = deriv3( phi[mz], phi[z], phi[pz] ); // 3

Tex2D d4 = deriv4( phi[mz], phi[z], phi[pz] ); // 4

Tex2D d5 = deriv5( phi[mz], phi[z], phi[pz] ); // 5

Tex2D d6 = deriv6( phi[mz], phi[z], phi[pz] ); // 6

Tex2D cx = curvX( d1, d3, d4, normalizeLUT ); // 7

Tex2D cxy = curvY( d1, d3, d5, cx, normlalizeLUT ); // 8

Tex2D curv = curvZ( d1, d2, d6, cxy, normalizeLUT ); // 9

// Sumthe speed functions

Tex2D speed = sumSpeed(curv, G ); // 10

// Upwind Computation

Tex2D minG1 = minGrad1( d1, d2 ); // 11

Tex2D minG2 = minGrad2( minG1, d1, d2 ); // 12

Tex2D maxG = maxGrad( d1, d2 ); // 13

Tex2D gMag1= gradMag1( minG2, maxG, speed, // 14

phi[z], l2NormLUT);

Tex2D gMag2= gradMag2( gMag1); // 15

// Do PDEtimestep update

Tex2D phi[z] = phiUp( gMag2, multScaleLUT ); // 16

}

}

As discussedin Chapter 3, this full-volume solver is only one to two times faster

than a sparse-¯eld CPU-based implementation [52]. The GPU-basedsolver, however, is

performing approximately 10 times more computations.



APPENDIX C

GPU MEMOR Y ALLOCA TION REQUEST

GENERA TION

C.1 In tro duction
This appendix describes the details of the GPU memory allocation/deallocation re-

quest schemeusedby the GPU virtual memory system. The algorithm is described ¯rst

in terms of an abstract client solver. Section C.1.2 presents the client-speci¯c details in

terms of the level-set solver client.

C.1.1 General Allo cation Request Algorithm

The allocation request algorithm consistsof the following steps:

A GPU computesVPN of requestedactive pages
B GPU compressesactive-pagerequest
C CPU readscompressedrequest image
D CPU decodesactive-pagerequest

a Issuesmemory allocation/deallocation requests
b Updates pagetables and geometry engine
c Calls client's ReleasePagefunction
d Calls client's InitNewPage function

StepsA and B create the set of requestedactive virtual pages.This set servesas the

memory allocation/deallocation request to the CPU. The CPU then calls the client's

ReleasePage function for each newly deallocated page before deallocating the page.

Similarly, the CPU calls the client's InitNewPage function for each newly activated page.

In Step A, the GPU usesclient-speci¯c data to create two auxiliary RGBA (i.e. 4-

tuple) bu®ersthat hold eight true or false (e.g., 255 or 0) values for each active data

element (Figure 3.6). The ¯rst six values represent whether or not the virtual page in

each of the six cardinal directions should be active for the next pass. The seventh value

indicates if the active pageitself should be active, and the eighth value is free to be used

by the client. The level-set solver client usesthe eighth value to determine if a newly
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deactivated memory pageis insideor outside the level-setsurface. This eight-dimensional,

active-pageinformation vector, J, is thusJ = (+x ; ¡ x; +y ; ¡ y; +z ; ¡ z; self; clientSpeci¯c),

where the ¯rst six elements refer to relative neighbor o®setsin the virtual page space,

VP .

The eight-value code, J, is computed in eight substream passesfollowed by a sin-

gle standard (i.e., entire memory page) pass. The substream passescompute whether

the in-plane adjacent memory pagesneeds to be active (i.e., the edge-adjacent pages

(+ x; ¡ x; + y; ¡ y)). Each substreampasscomputesthe value of a client-speci¯ed function,

IsNeighborActive , acrossthe pageboundary orthogonal to the pageedgebeing rendered

and writes the boolean result to the corresponding output component of J. The second

computation calls IsNeighborActive for the pages above and below the active one.

Note, however, that becausethe neighboring pagesare face-adjacent, this computation is

performed at all data elements in the page instead of just the edges. The computation

also writes a true value to the J component representing the active page itself if the

client's IsSelfActive function returns true. The value of the eighth bit is ¯lled by the

result of the client's IsEighthBitTrue function.

Step B of the allocation-request algorithm is to compressthe two, J bu®ers into

a small (· 64kB) active-pagemessage.This compressedmessageserves as the memory

allocation/deallocation requestthat is sent to the CPU. The compressionis accomplished

by rendering a quadrilateral of sizeS[GP ] with the automatic mipmapping option enabled

on the neighbor-information bu®ers. The render pass also uses a fragment program

designedto create a bit code at each pixel value. Each pixel in the resulting small image

corresponds to a physical memory page. The value of each pixel contains an eight-bit

code of the sameform asthe eight-value code producedin step A (i.e., the J vector). This

eight-bit code completely determines if the memory page and/or any of its six cardinal

neighbors in virtual pagespaceare to be active on the next pass.

The automatic mipmapping performs a box-¯lter averaging of the values written in

Step A. The result is that if any data element in the memory page set a value to true

(i.e., 255) in Step A, the down-sampled value will also be true (i.e., nonzero). The

fragment program inspects these down-sampled values. It sets the corresponding bit in

the output value to true for each nonzeroinput. The bits are set via an emulated bitwise

OR operation. Current fragment processorsdo not support bitwise operations, but an

OR is emulated by conditionally adding power-of-two valuesto the output value.
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In Step C, the CPU readsthe bit-code messagefrom the GPU. Step D beginsby the

CPU wrapping the messagebu®er with a bit-v ector accessor. The resulting bit vector

is a linear representation of the physical pagespace,GP , where each byte represents the

information for a page. Two auxiliary bit-v ectors are allocated|eac h a bit-addressed,

linear representation of the virtual memory pagespace,VP . The ¯rst is the newActiveSet

bit vector, and the second is the client-speci¯c eighthBitSet bit vector. After the

allocation messageis decoded, a true bit in the newActiveSet bit vector will denote

an active virtual page.

The CPU then decodes the bit-v ector message.For each 8-bit sequence,the current

linear index is converted to a physical pagenumber (PPN). The inversepagetable then

converts the PPN to a VPN. Becauseeach bit in the bit-code messagerepresents an

o®set direction from the current virtual page, the decoder can easily reconstruct the

VPN for each neighbor of each active page. The decoder then reads the seven spatial

pagebits. It then computes the VPN for the pagerepresented by each true bit and sets

the corresponding bit in the newActiveSet bit vector to true. If the eighth bit is true,

the eighthBitSet is set to true for the corresponding virtual page.

The virtual memory systemnext determineswhich virtual memory pagesto deallocate

and which to allocate. The set of newly deactivated pagesis constructed by performing

a set-subtraction of the newActiveSet from the oldActiveSet . The set of pagesthat

needto be allocated for the next passis createdby computing the opposite set di®erence.

Each deallocated memory page is pushed onto a stack of free memory pages. The page

table are updated basedon the client's implementation of ReleasePagefunction. Each

newly activated page is mapped to a physical memory location by popping a page from

the free page stack. The physical page is mapped in the page tables and the geometry

engine is appropriately updated. The new physical memory is then initialized via the

client's InitNewPage implementation.

C.1.2 Level-Set Solver Implemen tation Details

For Step A of the update algorithm described in section C.1.1, the level-set solver de-

¯nes the functions IsNeighborActive and IsSelfActive . The IsNeighborActive reads

the previously computed, one-sidederivative that crossesa pageboundary onto a speci¯c

neighbor. The function returns true if the derivative is nonzero. The IsSelfActive

function returns true if any of the six, cardinal, one-sidedderivatives are nonzero. The
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level-set solver simply writes the value of the level-set embedding to the eighth data

value. This is used to determine if a newly deactivated page is inside or outside of the

level-setsurface. The IsEigthBitTrue function usedby the fragment program in Step B

returns true if the eighth data value is greater than zero. If a pagebecomesinactive, it

is guaranteed to be either all black or all white. The down-sampled level-set embedding

for the pagewill thus be either pure black or pure white.

The eighthBitSet used in the bit-code messagedecoding stage (Step D) is used to

determine if a newly deactivated memory page is inside or outside the level-set surface.

If the bit for the pageis true, then the pageis inside the surface. Otherwise it is outside.

This information is usedby the solver's ReleasePagefunction to map deactivated pages

to the correct static physical page (white or black). These static mappings ensurethat

derivativesacrossboundariesof the active domain are correct.

The solver's InitNewPage function initializes newly allocated physical memory. The

memory is initialized to either white or black depending on the inside/outside setting

in the page table entry . Note that no level-set data are transferred to accomplish the

update. The entire level-set solution residesonly on the GPU for the duration of the

computation. The current implementation also has to sendpre-computedspeedpagesto

the GPU when new pagesare added. This could be optimized for many speedfunctions,

however, by computing the function on the GPU.



APPENDIX D

SOFTW ARE DESIGN

D.1 In tro duction
This appendix describesthe software infrastructure on which the GPU-basedlevel-set

solver and visualization systemis built. The ¯rst sectiongivesan overview of the layered

structure of the code. The proceedingsectionsgive detailed documentation for each of

theselayers.

D.2 Design Overview
The GPU-basedlevel-set solver and visualization systemare built using ¯v e separate

software layers. Figure D.1 shows these¯v e layersand the libraries within each layer. The

lowest layer includes low-level data structures and the OpenGL interface for controlling

the GPU. The secondlayer provides object-oriented abstractions for GPU-speci¯c oper-

ations, while the third layer encapsulatesthe operations necessaryto executean entire

render pass. The fourth layer includes the level-setsolver code and visualization modules

described in Chapter 3. Lastly the ¯fth layer encompassesthe volume segmentation

application described in Chapter 4.

The ¯rst layer is comprisedof three software libraries: The OpenGL three-dimensional

graphicsAPI [43], a utilit y library calledGutz, and an OpenGL management utilit y called

Glew [17]. The OpenGL routines issuecommandsto the GPU and passdata between

the CPU and GPU. The Gutz library contains core utilities such as vectors, arrays, and

matrices. Milan Ikits' Glew library greatly simpli¯es the handling of the various OpenGL

versionsand extensions.

The secondlayer is an object-oriented abstraction around OpenGL called Glift . Glift

usesOpenGL and Gutz to provide a framework for writing modular, re-usableOpenGL

code.

The third layer, CompGPU, usesGlift objects to abstract a GPU render passas a

function-object (functor). CompGPU enablesprogrammers to write render passes
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 Glift

 CompGPU

SolverRLS SpeedRLS Visualization

GlewOpenGLGutz

Segmentation Application

Figure D.1 . The ¯v e software layerswith which the level-setsegmentation application is
built. In the ¯rst layer, OpenGL is usedto control the GPU, Gutz de¯nes vector, matrix,
and array data structures, and Glew handlesOpenGL extensions.The secondlayer, Glift,
combines OpenGL calls into reusable object-oriented OpenGL modules. CompGPU is
the third layer and encapsulatesan entire render passas a forEach function call. The
level-set solver, level-set speed functions and visualization modules are de¯ned in the
fourth layer, and the volume segmentation application comprisesthe ¯fth layer.
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using function-call-lik e syntax. The fourth software layer contains the level-set solver

and visualization modules. Both of theselibraries make extensive useof Gutz, Glift, and

CompGPU objects. The solver and visualization objects communicate with each other

via several prede¯ned interfaces.

The ¯fth and ¯nal layer is the interactive level-setsegmentation application. This layer

createsan instanceof the level-set solver and con¯gures it for volume segmentation. The

segmentation application also instantiates the visualization modules. The application

speci¯es the graphical user interface (GUI) using Glut [20] and Glui [39]. Note that

the fourth and ¯fth layers make extensive use of Gordon Kindlmann's Nrrd library [21]

for raster data manipulation. This includes ¯le I/O, data resampling, resizing, slicing,

cropping, tiling, etc.

D.3 The First Layer
D.3.1 Op enGL

The system usesthe OpenGL graphics API to control the graphics processor. The

details of the API are described in other sources[43] and will not be repeated here.

OpenGL calls set the state of the graphics board and display drivers. This low-level of

programming is error-prone and leads to non-reusablecode. This is the motivation for

the Glift abstraction layer.

D.3.2 Glew

The Glew library [17] (OpenGL Extension Wrangler) greatly simpli¯es the many

versionsof OpenGL and the large number of OpenGL extensions. It also uni¯es the use

of all OpenGL featuresacrossmultiple computational platforms. Glew wascreatedand is

maintained by Milan Ikits and will not be discussedin detail in this thesis. In brief sum-

mary, using Glew entails simply replacing all OpenGL-related headerincludes (including

vendor-speci¯c extensions)with glew.h and wglew.h. The function glewInit() is then

calledoncein the application to initialize all OpenGL API calls (including all extensions).

Glew can then be queried at run-time to determine the availabilit y of speci¯c OpenGL

features.

D.3.3 Gutz

The Gutz library contains ubiquitous primitiv es for graphics-related programming

such as vectors, matrices, and arrays. This library is a combination of code written by
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Joe Kniss, Milan Ikits, and myself. All of the Gutz classesare template-based,lightweight

abstractions on top of raw data. The classesare carefully designedto have a run-time

representation that consistsonly of the desired data (i.e., no virtual function pointers,

etc.). The result is that complex data structures can be created (e.g., multidimensional

arrays of vectors) that have a C-like, contiguous underlying memory representation. This

representation is critical for both performanceand interfacing with low-level API's such

as OpenGL that require contiguously allocated data.

The vector classesconsistof templated classesfor 1D to 4D vectors,while the matrices

consist of templated classesfor 2 £ 2 to 4 £ 4 matrices. Pre-de¯ned typedefsexist for

many of the common instantiations of theseobjects. The typdefsare named in a similar

fashion to OpenGL type speci¯cations. For example, a three-vector of °oats is a vec3f ,

a 4 £ 4 matrix of integers is a mat4i .

The array classesare templated by element typeand separateclassesexist for 1D to 5D

arrays. There are two typesof arrays: arrayOwnand arrayWrap. Thesedi®erby memory

ownership policy. Creating an arrayOwn object allocatesmemory for the array. Likewise,

deleting an arrayOwn frees the memory. In contrast, an arrayWrap object does not

allocateor freethe underlying memory. The purposeof the arrayWrap classesis to provide

convenient multidimensional accessorsaround raw data. They alsoallow the programmer

to \cast" array data to di®erent dimensionalities. This design is again motivated by

the requirement to communicate blocks of data to/from low-level APIs. Note that the

arrayWrap classfor each dimensionof array is a subclassof the corresponding arrayOwn.

As such, arrayWrap objects can be passedas function arguments where the parameter

speci¯cation is an arrayOwn. Also note that an arrayBase classexists that is dimension-

agnostic and can thus be usedto passarbitrary dimensionedarrays.

D.4 The Second Layer: Glift
The secondlayer is an object-oriented abstraction around OpenGL called Glift . Glift

usesOpenGL, Gutz, and Glew to provide a framework for writing modular, re-usable

OpenGL code. Unlike other object-oriented OpenGL encapsulationssuch as GLT[49]

and OpenInventor[45], the Glift framework is designedfor low-level OpenGL developers

rather than high-level graphics programmers. Glift's object structure is designedonly to

enforcesemantically correct OpenGL programming but avoid making assumptionsabout

how OpenGL will be used. Glift also does not encapsulateany windowing-related calls
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other than the handling of pbu®ers. It is expected that a windowing utilit y such as

Glut [20] will be used.

The Glift framework de¯nes a set of reusable and extensible modules that can be

composited into higher-level objects. The multi-lev el approach is very °exible in that

a programmer can choose to work at various levels within the same application. The

possible coding levels include raw OpenGL, basic Glift objects, and various levels of

composited Glift objects. These composite Glift objects may be as simple as a multi-

texture object or as complex as an entire render pass. Another goal of the library is to

isolate all GPU-vendor-speci¯c OpenGL code into pluggablemodules to facilitate writing

applications that support multiple GPU architectures. A classtree of Glift is shown in

¯gure D.2.

The Glift design supports two types of OpenGL calls: those that set/unset GPU

pipeline state (the StateGLI tree) and those that initiate processingof data through

the pipeline (the DrawableGLI and RenderableGLI trees). A third type of call, pipeline

status queries,are not currently supported but could be added later. All OpenGL calls

that set/unset state are encapsulatedby the class tree based on the StateGLI inter-

face. This interface speci¯es a bind() and release() public virtual method. OpenGL

calls that move data through the pipeline are encapsulatedby the class tree based on

the DrawableGLI interface. DrawableGLI simply speci¯es a public draw() method. A

third class tree based on the RenderableGLI interface combines all the StateGLI and

DrawableGLI objects that specify an entire render pass.

In addition, all Glift objects support a compile() method that attempts to compile

the OpenGL commandsencapsulatedby the object into a display list. Note that this

feature providesa way to \compile away" the abstraction penalty that might otherwisebe

causedby the extensive useof virtual functions. In practice, however, the GPU consumes

most of the execution time in many Glift applications and so the abstraction layers do

not a®ect the execution speed. The Glift compile() feature is currently only partially

implemented. It is supported throughout the framework, but only works correctly when

all of the reachable OpenGL calls can legally be compiled into display lists. Future work

will add the correct handling of OpenGL calls that cannot be compiled (e.g., wgl calls,

vertex array pointer calls, etc.).

Glift is designedto provide a minimal amount of preencapsulatedOpenGL state and

have obvious extensionpoints for adding more functionalit y asdesired. As Glift matures,
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Figure D.2 . Class tree for the Glift, object-oriented OpenGL framework.
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more functionalit y will comeprede¯ned by the library . The following is a list of current

extensionpoints:

ClassName Purpose
GenState De¯ning any bind/release state that is not already de¯ned.
PixelShader De¯ning interfacesto hardware-speci¯c fragment shaders
VertexShader De¯ning interfacesto hardware-speci¯c vertex shaders
WrappedPrim De¯ning high-level drawablescontaining a single

PrimGL object
MultiPrim De¯ning high-level drawablescontaining multiple

PrimGL objects
RenderPass De¯ning a render passwith functionalit y di®erent than

has beenprovided
DrawAlgorithm De¯ning a drawing algorithm other than the standard

(glBegin(: : :)/glEnd( : : :) or vertex array method
TexCoordGen De¯ning texture coordinate generation algorithms

To begin compositing a render pass, the StateGLI objects are ¯rst composited into

a Shader object. The Shader thus contains the speci¯cation of the textures and any

other OpenGL pipeline state required by the pass. The DrawableGLI objects are then

de¯ned and put into a MultiPrim object. The Shader object and the Multiprim (or

any other RawPrim) are combined into a ShadedPrimobject. This ShadedPrimobject (or

any Drawable) is combined optionally with a texture and/or pbu®er destination into a

RenderPass.

The useof the texture objects (the Texture classtree) require someadditional expla-

nation. To create a texture object, the user ¯rst createsan instance of MultiTexOState

to specify the texture object state. If texture data is to be downloaded to the texture

object, the user also creates an appropriate TexData object. The constructor of the

desiredtexture object then takesa pointer to the MultiTexOState object and optionally

the TexData object. In addition, the texture constructors alsoacceptan optional pointer

to a pbu®erobject (PbuffGlift ).

Glift is by no meansa completedproject. The ¯rst issueis to completethe compile()

implementation to support non-compilable API calls. The secondfuture project is to

add a PrimWrap object to the DrawableGLI tree that does not own its vertex and

attribute data. It instead should only hold pointers to the application-owned data.

This is important for adoption of Glift into existing applications. It may be possible

to implement this by adding C++ template policies [2] to the current objects. The third

future-work issueis adding smart-pointers (i.e., referencecounting pointers) throughout
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Glift for automatic memory management. The last, and most ambitious, future direction

for Glift is to rework the coreobjects such that Glift can interchangeablyuseMicrosoft's

DirectX or OpenGL asan underlying API. An important goal for Glift designis that the

framework have a clearly de¯ned layer that remains below that of a scenegraph (i.e., a

scenegraph could be built using Glift objects). It may be advantageousto remove the

Glift objects that are above this abstraction level in order to facilitate its adoption.

In addition to its usein the level-set solver described in this thesis, Glift is now being

usedby Joe Kniss in his Simian volume renderer [22]. An early version of Glift was also

usedto build the front-end of the real-time ray tracing demo,Star-Ray, shown at the SGI

Siggraph 2002exhibition booth [46].

D.5 The Third Layer: CompGPU
The third software layer, CompGPU, usesGlift objects to abstract a GPU render pass

as a function-object (functor). The function-call abstracted by CompGPU is essentially

a forEach loop over data stored in texture memory. The speci¯cation of which data

elements to include in the computation is speci¯ed by the rasterization of two-dimensional

geometry. The computation performed on each element is speci¯ed by the vertex and

fragment programs,and the results of the forEach call are written to the speci¯ed output

bu®er(s). While the level-set solver was successfullybuilt using CompGPU objects, the

design has proven to be cumbersomeand problematic. This software layer should be

re-designedbefore future projects adopt it. As such, this section describes both the

successesand failures of the design.

The CompGPU layer consists of only a single class, ComputeSlab. All clients of

CompGPU subclassComputeSlabto createa speci¯c render pass. The computation (i.e.,

render pass) is initiated by calling the compute() virtual function with the appropriate

parameters.

The design decision to use ComputeSlab as a base class is a severe problem with

CompGPU. Although the design does maximize code reuse, the fact that each com-

putation must be a separate class de¯nition leads to an explosion in code size. A

policy-basedCompGPU layer appearsto bea much better solution. Mark Harris's SlabOp

class[15] is a much better starting point than CompGPU. SlabOp, however, is missing a

function-call-lik e syntax. This last featuresis di±cult to support in a generalfashion, yet

is an important abstraction for writing general-purposeGPU computation applications.
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One of the largest challengesis the speci¯cation of arguments to the compute() func-

tion. In practice, many of the input arguments (textures, fragment programs, geometry,

etc.) remain constant each time a computation is performed. There are instances,

however, when some of these arguments do change. An argument caching mechanism

is thus neededso that the programmer can dynamically selectwhich parametersneedto

be updated.

The current mechanism for handling arguments is to passstatic arguments via the

subclassconstructor, and passdynamic arguments to the compute() function. This is an

e®ective solution, but leads to a large number of compute() versions in the baseclass.

A policy-based implementation may be the solution to this|where the interface of the

compute() call is de¯ned by a policy. Note that Mark Harris's SlabOp handles this

problem by requiring the programmer to set the state of the SlabOp object beforecalling

the analogueof compute() with no arguments. The problem with this approach is that

it leadsto di±cult-to-read code that doesnot have the appearanceof function (forEach )

calls. Implementing a C++ function call on top of each SlabOp call may be a reasonable

solution.

D.6 The Fourth Layer
The fourth software layer contains the level-setsolver and visualization modules. Both

of these libraries make extensive useof Gutz, Glift, and CompGPU objects. The solver

and visualization objects communicate with each other via several prede¯ned interfaces.

D.6.1 Level-Set Solver

The GPU-based level-set solver uses CompGPU, Glift, and Gutz objects to build

a °exible solver framework. This framework includes the full speci¯cation of various

level-set solvers and the speedfunction modules usedby the solvers. The current design

also includes two-dimensional visualization tools, but these should be removed|just as

the volume rendering module is entirely separatefrom the solver. Although the design

includes level-set-speci¯c functionalit y, the framework lays the groundwork for a more

general solver infrastructure in the future. Much of the infrastructure described herein

could and should be handled by a compiler. The designof this framework, however, does

outline a set of required featuresfor future streaming languages/APIs for generalpurpose

GPU computation.
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The core solver classis SolverRLS. The speci¯c solvers are subclassesof SolverRLS.

The varioussolversinclude versionsfor di®erent GPU architectures, separatetwo-dimensional

and three-dimensionalversions,and sparseand densecomputation versions. In addition,

a parallel class tree, SpeedRLS, speci¯es the speed function modules. The solvers take

SpeedRLSobjects as constructor inputs.

The SolverRLS classtree is an exampleof the Strategy object-oriented designpattern.

The base class provides the functionalit y that is common to all solvers and speci¯es

abstract interfaces for functionalit y that is required, but speci¯c to the speci¯c solvers

(implemented as subclasses). SolverRLS provides memory management services,user

interface (UI) hooks, as well as speedfunction management.

The solver subclassesown their speci¯c computation. They create the CompGPU

objects for each pass, specify the order of the passes,and integrate the speed function

modules into the computation. Each subclass reports the number of live temporary

bu®ersat each program point (where each program point speci¯es a render pass) to the

baseclass. The baseclassthen usesthis information to allocate an appropriate number of

temporary pbu®ers/textures and perform register allocation to resolve con°icts between

the bu®ers. The subclassthen receives a set of pbu®er/texture pointers to use for each

program point that minimizes memory usageand guarantees that no data con°icts will

occur.

The solver infrastructure is designedto allow for fully modular speed functions that

can be arbitrarily added to appropriate solvers without having to changethe solver. The

solvers interact with the speed functions by informing the baseclassof DataPacks that

are available and for which program points theseDataPacks are valid. A DataPack is a

set of level-set-speci¯c temporary valuesthat are currently held in texture memory. The

elements of a DataPack are called SolverSID s (solver service IDs). These DataPacks

are used by the baseclassto schedule the execution of speed function modules into the

computation.

The speed function modules encapsulatean entire level-set speed function computa-

tion. They are implemented as subclassesof SpeedRLS. The computation of the speed

function may include zero to many render passes. Just like the solver modules, the

speed function module owns its own CompGPU objects and speci¯es the order of the

computation. The speed functions receive input data from the solver by subscribing to

DataPacks provided by the solver. Speed function modules also report the number of
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temporary bu®ersrequired for the speed computation. The SolverRLS class analyzes

the DataPack and temporary bu®er requests to schedule the execution of the speed

module and allocate pbu®ers and textures appropriately. As mentioned above, much

of this functionalit y would be much more concisely expressedin languageform|either

speci¯cally for level-sets or for general streaming GPU computation. The Brook [5]

streaming languageis a start in this direction.

The naming schemefor the solvers requires someadditional explanation. The names

of the subclassesall beginwith SolverRLS . The next three charactersdescribeattributes

of the solver. The ¯rst character is either D or S and denotesif the solver usersa dense

(i.e., full) or sparsememory representation, respectively. The secondcharacter is also

either D or S and denotesif the solver usesdenseor sparsecomputation, irrespective of

the memory representation. The last character represents the dimensionality of the solver

and is thus either 2 or 3. The last part of the solver name denotesthe GPU architecture

for which the solver is designed. Currently the two options are A8 and A9, which stand

for ATI Radeon 8500 and ATI Radeon 9x00 GPUs, respectively. Note that the A9

classi¯cation is for GPUs with a model number of 9600or higher. As such, the streaming

narrow-band solver described throughout the thesis is named SolverRLS SS3A9.

D.6.2 Visualization Mo dules

The three-dimensionalvolume rendering module described in this thesis is an entirely

separate library . The majorit y of this code was written by Joe Kniss and leverageshis

Simian [22] volume rendering library . The level-set-solver-speci¯c code is in a module

called lsetRen . This is not implemented as a class, but should be. It speci¯es an

initialization call (essentially a constructor), a function to set the level-set input data

texture, and a function usedto update the virtual-to-ph ysical pagetable mapping. This

update function is called by the SolverRLS SS3A9 module when a visualization update

is requested. The module also speci¯es hooks for the three-dimensional user-interface

features (three-dimensional manipulations, clipping plane operations, etc.).

The two-dimensionalvisualization modulesarecurrently ownedby the solver modules.

They should, however, be entirely separateand communicate with the solvers similar to

the communication schemeusedby the volume renderer.
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D.7 The Fifth Layer:
Level-Set Segmentation Application

The ¯fth and ¯nal layer is the interactive level-set segmentation application. This

layer createsan instance of the level-set solver and con¯gures it for volume segmentation

by creating appropriate speed functions. The segmentation application also instantiates

the volume visualization module. This software level has received the least amount of

development time and e®ort of the entire application and should be viewed as a minimal

implementation with much room for improvement.

The application speci¯es the graphical userinterface(GUI) usingGlut [20]and Glui [39].

All ¯le i/o and raster-data manipulation is performed using Gordon Kindlmann's nrrd

library [21]. The main routine for the application is contained in the ¯le, \base.cpp."
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