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ABSTRA CT

Deformable isosurfaces,implemented with level-set methods, have demonstrated a
great potential in visualization and computer graphics for applications such as segmen-
tation, surfaceprocessing,and surfacereconstruction. Their usefulnesshas beenlimited,
however, by two problems. First, three-dimensional level sets are relatively slow to
compute. Second,their formulation usually entails free parametersthat can be ditcult
to tune correctly for speci ¢ applications. The secondproblem is compounded by the
‘rst. This thesis preseris a solution to these challengesby describing graphics processor
unit (GPU) basedalgorithms for solving and visualizing level-set solutions at interactive
rates for volumesas large as 256°.

Level-settechniquesdeformisosurfacesy solving partial di®erenial equations(PDES)
on avoxel grid. Excient solversfor the equationscompute a solution only at those voxels
on or nearthe isosurface. The active elemerts in this narrow-kand of computation change
asthe level-set solution ewlves. This thesis demonstratesthat sud dynamic sparse-grid
computations can be exciently solved using a streaming architecture platform{a modern
graphics processor. The solution usesa multidimensional virtual memory mapping to
pack the active, three-dimensional voxel data into two-dimensional texture memory on
the GPU. A novel GPU-to-CPU messageassingschemequickly updatesthis sparsedata
structure asthe isosurfacemoves.

The integration of the level-setsolver with a real-time volume rendererallows a userto
visualize and steerthe deformablelevel-setsurfaceasit ewlves. The resulting isosurface
can also sere as a region-of-interest speci er for the volume renderer. This thesis
demonstratesthe capabilities of this technology for interactive volume segmemation and
visualization. This thesis also preseris an evaluation of the method with a brain tumor

segmermation user study.
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CHAPTER 1

INTR ODUCTION

1.1 Problem Statement

Surfacesde ne the objectsin the world around us|the rough surfaceof a granite rock
cli®, the smooth plastic of a child's toy, the complex surfaceof a kitchen sponge,and the
dynamic water surfaceof a stormy sea. Scierti ¢ exploration often includesthe seard for
surfacesthat denoteimportant boundaries. Examplesinclude a geologistsearding for oil
deposits in the earth's strata, a neurosurgeon nding the exact extent of a brain tumor,
and a snawv avalandhe forecasterdiscovering a dangerouslyweak layer in a mountain snowv
padc.

Just as in the physical world, surfacesare a critical componert of computational
scienceand computer graphics. There are many techniques for represerning computa-
tional surface models including vertex meshes,b-spline patches, implicit surfaces,and
others. The deformation of these surfacerepresenations, however, preserts a number of
challenges. Example applications of deformable surfacesinclude surfacetracking in °uid
simulations, image and volume segmetation, and surface processing(e.g., smoothing,
sharpening, blending).

The deformation of an explicit surface represenation (e.g., vertex mesh) involves
updating connectivity and parameterization information. This can be dixcult as well
as limit the range of possible deformations to those which do not change topological
gerus. Implicit surfaces,on the other hand, can easily change topological gerus, split
into multiple ertities, and merge multiple surfacestogether. The deformation technique
discussedin this thesis, the level-set method, is a promising technique for modeling
deformable implicit surfaces.

Level-setmethods model deformableisosurfaceswith a set of partial di®erenial equa-
tions (PDEs) that act on an implicit surfacevoxel grid. The speci ¢ PDEs, and thus the
surface deformations, are determined by the level-set application. For physically-based

simulation applications, the simulation results determinethe surfacemovemen. For many



nonsimulation applications (e.g., surface processingand segmetation), level-set surface
deformation is controlled by a set of free parameters.

While the level-set approad is °exible and powerful, its use can be problematic.
First, level setsare relatively slow to compute. Second,the free parametersusedby some
applications to control surfacedeformation are often ditcult to set. The latter problem
is compoundedby the rst becausejn many scenarios,a usermust wait minutes or hours
to obsene the results of a parameter change.

In responseto the needto acceleratelevel-set computations, researders have created
a number of optimization strategies. The most successfubf theseare the sparse-grid and
narrow-kand strategieswhich solve the level-setPDE only on the voxelsnearthe isosurface
(rather than onthe ertire voxel grid). Although theseoptimized solversachieve signi cant
speedups, they are still far from interactive for all but the smallest three-dimensional
computations. The work in this thesis builds on these optimizations by presering a
narrow-band algorithm that runs on a modern graphics processor.

The streaming architecture of modern graphics processorsprovides an attractiv e
alternate computing platform for computationally demanding problems. These spe-
cialized processorsacceleratethree-dimensional computer graphics computations with a
combination of dedicated hardware, data-parallel computation, and high-speed memory.
Although level-set algorithms exhibit the required data-parallelism to run on GPUs, the
sparseand dynamic nature of the computation makesmapping them to graphicshardware
dizcult.

This thesis preseris a solution to the above problems by preseriing an etcient map-
ping of the level-set partial di®erertial equations to a commadity graphics processor.
This GPU-based solver runs up to 15 times faster than a highly-optimized sparse- eld
implementation running on a modern certral processingunit (CPU). By combining the
fast solver with a real-time volume renderer, a user is able to both visualize and easily
control the ewolving computation. This thesis presens an interactive volume segmema-
tion application built with this new solver. The thesis also presers an evaluation user
study in which brain tumors are segmered from MRI data using this new segmeration

tool.



1.2 Contributions and Results
This thesis makes cortributions in the "elds of deformable surface processing,GPU-
basedstreaming computation, volume visualization, and medical segmemation. The main

contributions are:

2 An integrated system demonstrating that level-set computations can be intuitiv ely

controlled by coupling a real-time volume renderer with an interactive solver

2 An interactive volume segmemation application built with the new solver, and a
userstudy that quanti es the e®ectivenesof the newtool for quickly and accurately

segmeting tumors from MRI data sets

2 A GPU-based three-dimensional level-set solver that is approximately 15 times

faster than previous optimized solutions

2 A multidimensional virtual memory schemefor GPU texture memory that supports

computation on time-dependert, sparsedata domains

2 A messageassingschemebetweenthe GPU and CPU that usesautomatic mipmap

generationto create compact encaded bitcode messages

2 Real-time volume rendering directly from a two-dimensionalpaded, sparsetexture

format
2 Region of interest speci cation for the volume renderer

2 Excient computation of a volumetric distance transform on the GPU

1.3 Overview

The following chapter discussegpreviouswork and badground for level sets, GPUs and
hardware-acceleratedvolume rendering. Chapter 3 describesthe details of the streaming
narrow-band solver. The rst section (Section 3.2) intro ducesa multidimensional virtual
memory system used to padck the active three-dimensional data into two-dimensional
texture memory. Section 3.3 then describesthe details of the streaming level-setsolver in
terms of the virtual memory system. That sectionalsoexplains a new distance transform
computation that runs ezciently on the GPU. Section 3.4 explains how the padked,
two-dimensionaldata format is volume renderedat interactiv e rates. Chapter 4 describes

the interactive, three-dimensional segmemation application built using the streaming



level-set solver. Section 4.3 discusseghe performanceof the application, and Section4.4
preseris a brain tumor segmemation an evaluation user study performed with the new
tool. The conclusionsin Chapter 5 summarize the work and propose future researt

directions in both streaming level-set solvers and graphics hardware.



CHAPTER 2

TECHNICAL BA CKGROUND AND
RELA TED WORK

2.1 The Level-Set Metho d
The level-setsurfacedeformation technique is basedon an implicit surfacerepresetta-
tion. In the level-setapproad, an n-dimensional manifold is embeddedin a R"*! space
(i.e., a manifold with codimension one). A scalar function, A(x;t), de nes the surface
embedding, wherex 2 R"*! and t is time. The set of points on the surfaceat time t, S;,

are mapped by A(x;t) sud that
St = FxjA(x;t) = Kkg; (2.1)

wherek is an arbitrary scalarvalue (often zero). It canalsobe said that S; is the k level
set of A(x;t). The discrete represenation of A(x;t) is referredto asthe embedding of the
level set k. For instance, the embedding for the kth level set can be created by setting
ead point on a uniform grid in Sg to k, all points inside the surfaceto A(x;0) > k and
all grid points outside to A(x;0) < k. The signeddistance from the k isosurfaceis often
usedfor the embedding, A(x;t), but it is not a requiremert of the technique.
The embedding, A(x;t), ewlveswith the surface,and the relationship is given by the
“rst-order, partial di®ereriial equation
@\((;;t) .

where v(x;t) describes the velocity of the surface at point x at time t. Within this

A(x:t) ev(x;t); (2.2)

framework one can implemert a wide range of deformations by de ning an appropriate
v(x;t). This velocity term is often a combination of seweral other terms, including data-
dependent terms, geometric terms (e.g., curvature), and others. In many applications,
these velocities intro duce free parameters, and the proper tuning of those parametersis

critical to making the level-set model behave in a desirable manner. Equation 2.2 is the



generalform of the level-set equation, which can be tuned for wide variety of problems
and which motivatesthe architecture of the new solver.

Although the proposed solver addressesthe solution to Equation 2.2, this thesis
restricts the discussionto a special form of Equation 2.2 that is suitable for the seg-
mentation application described in Chapter 4. This special caseof Equation 2.2 occurs
whenv(x;t) = G(x;t)n(x;t), wheren(x;t) is the surfacenormal and G(x;t) is a scalar

“eld, which is refereedto asthe speed of the level set. In this caseEquation 2.2 becomes

@\(x;t) _
@

iir - AXx;1)jG(x;t): (2.3)

Equation 2.3 describes a surface motion in the direction of the surface normal, and
thus the volume enclosedby the surface expands or contracts, depending on the sign
and magnitude of G(x;t). The remainder of this thesis usesan abbreviated notation
by assuming the spatial and temporal variability of A(x:t), G(x;t), and n(x;t) are
understood. These quartities are thus referredto as A, G, and n respectively.

The mean curvature of the level setsof A, H, (hereafter referred simply as curvature)
is commonly usedas a level-setspeedfunction (i.e., G). Becauseapplying curvature °ow
to a surface minimizes surface area, curvature is often combined with data-basedspeed
terms to smooth out an otherwise rough or noisy surface solution. A cornvex surface
under pure curvature °ow will corvergeto the n-sphereand nally a single point [14].
The mean curvature of A is de'ned as

rA
H = cor ¢Jr—AJ (2.4)
where, if n is the dimensionality of the surface,c, = 1=(nj 1).

There is a special caseof Equation 2.2 in which the surfacemotion is strictly inward
or outward. In suc casesthe PDE can be solved somewhat exciently using the fast
marching methad [44] and variations thereof [11]. However, this casecovers only a very
small subsetof interesting speedfunctions. In general,this work in this thesisis concerned
with solutions that allow the model to expand and cortract aswell asinclude a curvature
term.

The initial estimation of A is propagated forward in time using nite forward dif-
ferences. The gradient magnitudes are computed with the up-wind scheme [34]. To
guarartee a stable solution, the upwind schemeapproximates r A using one-sidedderiva-

tivesthat are always in the up-wind direction of the propagating surface. The largest



allowable time step, 4 t, is inversely proportional to the maximum speedat a giventime,
t. about max value for 4 t is used. Given that % is de ned by Equation 2.3 and the

generalupdate equation is

Ax;t+ 4t) = A(x;t)+4t%\; (2.5)
the level set update equation is
Ax;t+ 41t) = Ax;t) + 4 tFjr Al (2.6)

The details of estimating r A and H are preserted in Appendix A.

2.2 Narro w-Band Level-Set Solvers

E+cient algorithms for solving the more generalequation rely on the obsenation that
at any onetime step the only parts of the solution that are important are those adjacert
to the moving surface(near points where A = 0). This obsenation placeslevel-setsolvers
as part of a larger class of solvers that exciently operate on time-dependen, sparse
computational domainsji.e., a subsetof the original problem domain. Howewer, in order
to take advantage of the sparsenature of level-set solutions, algorithms must maintain a
somewhat consistert level-setdensity (i.e., r A), which is de ned as the number of level
setsper unit volume. If the level-setdensity becomestoo low (spread out) it can become
dizcult to exciently isolate the computation to the desired interface. Alternativ ely, a
level-setdensity that becomestoo high (closetogether) can causealiasing and numerical
problems. To addressthis, level-setsolversmust managethe motion of the level sets,their
density, and the position of the model relative to the desired computational domain.
In general time-dependert, sparse algorithms maintain proper motion and density by
iterating on the three stepsshown in Figure 2.1.

Two of the most common CPU-based level-set solver techniques are the narrow-
band [1] and sparse- eld [57] methods. Both approadheslimit the computation to a nar-
row region near the isosurfaceyet store the complete computational domain in memory.
The narrow-band approad implemerts the initialization and update stepsin Figure 2.1
(Steps1and 3) by updating the embedding, A, on a band of 10-20pixels around the model,
using a signeddistance transform implemented with the fast marching method [44]. The
band is reinitialized whenewer the model (de ned as a particular level set) approaces

the edge. In cortrast, the sparse- eld method traversesthe complete domain only during



Figure 2.1. The three fundamental stepsin a sparse-gridsolver. Step 1 initializes the
sparsecomputational domain. Step 2 executesthe computational kernel on ead elemen
in the domain. Step 3 updatesthe domain if necessary Steps2 and 3 are repeated for
ead solver iteration.

the initialization step of the algorithm in Figure 2.1. The sparse- eld approach keeps
a linked list of active data elemens. The list is incremertally updated via a distance
transform after ead iteration. A similar strategy is described in Peng et al. [36]. Even
with this very narrow band of computation, update rates using convertional processors
on typical resolutions(e.g., 256° voxels) are not interactive. This is the motivation behind

the GPU-based, streaming narrow-band solver presened in this thesis.

2.3 Scientic Computation on Graphics Pro cessors

Graphics processingunits have been developed primarily for the computer gaming
industry, but over the last seweral yearsresearters have cometo recognizethem asa low
cost, high performancecomputing platform. Two important trends in GPU dewelopmer,
increased programmability and higher precision arithmetic processing, have helped to
foster new nongaming applications.

For many data-parallel computations, graphics processorsoutperform certral pro-
cessingunits (CPUs) by more than an order of magnitude becauseof their parallel
streaming architecture [35] and dedicated high-speed memory. In the streaming model
of computation, arrays of input data are processeddentically by the samecomputation
kernel to produce output data streams. The GPU takes advantage of the data-level
parallelism inherent in the streaming model by having identical processingunits execute
the computation in parallel.

Although streaming architectures sudh as GPUs share a data-parallel design with



Cray-like vector computers [41] and massiwly parallel SIMD computers suc as the
Connection Machine system [16], they have seweral important di®erences. In cortrast
to vector architectures, which compute a single instruction on many data elemerns; the
computation kernelin a streaming architecture may consistof many (possibly thousands)
of instructions and use temporary registersto hold intermediate values. In conrast to
Connection-Madine-like computersthat contain thousandsof small processingelemerts,
eat with their own small memory; GPUs use a relatively small number of processing
elemerns (e.g., 8) that ead have accesgo global memory aswell asa small number of local
registers(e.g., 32). Lastly, in addition to thesearchitectural di®erencesthe ubiquity and
low price of GPUs (e.g., lessthan $500U.S. dollars for a GPU in cortrast to millions of
dollars for a vector super-computer) meansthat millions of usersand programmershave
accesgo the platform. This large number of usersmakesthe developmert of GPU-based
algorithms especially warranted at this time.

Currently GPUs must be programmed via graphics APIs such as OpenGL [43] or
DirectX [33]. Therefore all computations must be cast in terms of computer graphics
primitiv es such as vertices, textures, texture coordinates, etc. Figure 2.2 depicts the
computation pipeline of a typical GPU. Vertices and texture coordinates are rst pro-
cessedby the vertex processor. The rasterizer then interpolates acrossthe primitiv es
de ned by the vertices and generatesfragments (i.e., pixels). The fragmernt processor
applies textures and/or performs computations that determine the nal pixel value. A
render pass is a set of data passing completely through this pipeline. It can also be
thought of asthe complete processingof a stream by a given kernel.

Grid-based computations are solved by rst transferring the initial data into texture
memory. The GPU performs the computation by rendering graphics primitiv es that
accesshis texture. In the simplest case,a computation is performed on all elemens of
a two-dimensional texture by drawing a quadrilateral that covers the same number of
grid points (pixels) asthe texture. Memory addressedhat identify ead fragment's data
value aswell asthe location of its neighbors are given astexture coordinates. A fragment
program (the kernel) then usestheseaddressedo read data from texture memory, perform
the computation, and write the result bad to texture memory. A three-dimensionalgrid
is processedas a sequenceof two-dimensional slices. This computation model has been
used by a number of researtiers to map a wide variety of computationally demanding

problemsto GPUs. Examplesinclude matrix multiplication, "nite elemen methods, and
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multi-grid solvers[13, 26, 50]. All of theseexamplesdemonstratea homogeneousequence
of operations over a denselypopulated grid structure.

Strzodka et al. [40] werethe rst to shaw that the level-set equations could be solved
using a graphicsprocessor.Their solver implements the two-dimensionallevel-setmethod
using a time-invariant speed function for °0od- Il-lik e image segmenmation, without the
assaiated curvature. Their solver did not take advantage of the sparsenature of the
level-set PDEs and therefore performs only marginally better than a highly-optimized
sparse- eld CPU implementation. The work in this thesis extends their work to three
dimensions,addsin the second-ordercurvature computation, and signi cantly optimizes
the solver by implementing a narrow-band solver on the GPU.

This thesispresens a GPU computational model that supports time-depgendent, sparse
grid problems. Theseproblemsareditcult to solve etciently with GPUs for two reasons.
The rst is that in order to take advantage of the GPU's parallelism, the streamsbeing
processednust be large, contiguous blocks of data, and thus grid points near the level-set
surface model must be packed into a small number of textures. The seconddixcult y is
that the level set moveswith ead time step, and thus the padked represemnation must
readily adapt to the changing position of the model. This requiremert is in cortrast to
the recernt sparsematrix solvers [4, 25] and previous work on rendering with compressed
data [3, 24]. In the two sparse-matrix solvers[4 25], a padcked texture schemeis used

to exciently compute sparsematrix-v ector multiplications as well as compute values of

Vertex & Texture
Coordinate data

(®) @)
Vertex Program

@) ©)

Texture data

Frame/Pixel Buffer
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Figure 2.2. The modern graphics processorpipeline.
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the sparsematrix elemers on the GPU. The scheme is static, howeer, in the sense
that the nonzero matrix elemers must be identi ed before the computation begins.
Recert work by Sherbondy et al. [47] describes an alternativ e time-dependert, sparse

GPU computation model which is discussedin Chapter 4.3.



CHAPTER 3

STREAMING NARR OW-BAND
ALGORITHM

3.1 Intro duction

This chapter describesGPU-basedstreaming algorithms for computing and visualizing
the solution of the three-dimensional level-set partial di®ererial equations. This new
solver is 10to 15 times faster than a highly-optimized CPU-basedsparse- eldimplemen-
tation.

The rst step toward creating a highly optimized GPU-based level-set solver was to
create a brute force solution [30]. The details of this solver are given in Appendix B.
This solver computes the level-set PDE at all voxels in the volume and is a direct
extension of the two-dimensional work of Strzodka et al. [40]. This basic GPU-based,
three-dimensional level-set solver runs one to two times faster than a highly optimized
sparse- eld CPU-based solver [52]. While this is not an impressive speedup, it is worth
nothing that the GPU-based solver performs approximately 10 times more calculations
than the optimized CPU-based one. As sud, a narrow-band/sparse- eld GPU-based
solver should theoretically be able to achieve a 10{20 times speedup.

The proposedstreaming, narrow-band level-set solver realizesthese speedupsby ex-
ciertly leveragingthe capabilities of modern GPUs. The algorithm padks the active com-
putational domain into two-dimensional texture memory, solves the three-dimensional,
level-set PDE directly on this padked format, and quickly updatesthe padked data after
ead solver iteration.

The design of the streaming narrow-band algorithm takesinto accourt seweral com-
putational limitations of modern GPUs as well as the goal of interactive performance.
First, the data-parallel computation model requireshomagyen@us operations on the ertire
computational domain. Second, memory constraints require an ezcient algorithm to
processand store only the active domain on the computational processor(i.e., the GPU).

Third, GPUs do not support satter write operations [38], and lastly, the communica-
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tion bandwidth betweenthe CPU and GPU is insuzcient to allow transmission of any
signi cant portion of the computational domain.

Section 3.2 describesa multidimensional virtual addressschemethat exciently maps
the time-varying three-dimensionaldata into a two-dimensionaltexture. Section 3.3 then
explains the details of the GPU-basedlevel-setsolver. In addition to explaining how the
multidimensional virtual memory schemeis usedin the solver, the sectionalsointro duces
a new distance transform computation that can be exciently performed on the GPU.

The direct volume rendering of the deforming level-setsurfaceis explainedin Section 3.4.

3.2 A Virtual Memory Address Scheme
for Sparse Computation

Remapping the computational domain (a subset of a volume) to take advantage of
the GPU's capabilities has the unfortunate e®ectof making the computational kernels
extremely complicated|that is ditcult to design, debug, and modify. The kernel pro-
grammer must take the physical memory layout into consideration ead time the kernel
addressesnemory. Other researders have successfullyremapped computational domains
to exciently leveragethe GPU's capabilities [4, 13, 25, 38], but they invariably describe
these complex kernels in terms of the physical memory layout. This section presens
a solution to this problem that allows kernel programmers to accessmemory as if it
were stored in the original (computational) domain|irresp ective of its physical layout
on the GPU. The solution is an extensionto the virtual memory systemsusedin modern

operating systems.

3.2.1 Traditional Virtual Memory Overview

Nearly all modern operating systems cortain a virtual memory system [48]. The
purpose of virtual memory is to give the programmer the illusion that the application
hasaccesgo a contiguous memory addressspace,while allowing the operating systemto
allocate memory for ead processon demand, in manageableincremerts, from whatever
physical resourceshappen to be available. Note that there are two meaningsof virtual
memory. The “rst is the mapping from a logical addressspaceto a physical address
space. The secondis the mecdanism for mapping logical memory onto a physical memory
hierarchy (e.g., main memory, disk, etc). For this discussion,virtual memory only refers
to the former de nition.

Virtual memory works by adding a level of indirection betweenphysical memory and
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the memory accessedby an application. Most convertional virtual memory systems
divide physical and virtual memory into equally sized pages The data addressedby an
application's cortiguous virtual addressspacewill often be stored in many, disconnected
physical memory pages. A pagetable tracks the mapping from virtual to physical memory
pages. When an application requests memory, the system allocates physical memory
pagesand updatesthe pagetable.

When an application accessememory via a virtual address,the systemmust rst per-
form a virtual-to-ph ysical addresstranslation. The virtual address,VA, is rst converted
to a virtual pagenumber, VPN. The system usesthe pagetable to corvert the VPN to
a physical page address,PPA. The PPA is the physical addressof the rst elemert in a
page. Finally, the memory system obtains the physical address,PA, by adding the PPA
to the o®set,OFF. The OFF is the linear distance betweenthe virtual addressand the

beginning of the virtual pagewhich cortains it. The addresscomputation is

VPN A o

PPA 6 PageTable(VPN) (3.1)
OFF A mod(VA;S[P])

PA A PPA+ OFF;

where S[P] is the size of a memory page.

3.2.2 Multidimensional  Virtual Memory for GPUs

The virtual memory systemusedin the proposedsolver is a multidimensional exten-
sion of the traditional virtual memory system described in Section 3.2.1. This section
beginsby de ning a generalmultidimensional virtual memory systemand then describes
details speci ¢ to the GPU implementation.

Traditional virtual memory systemsuseone-dimensionalvirtual and physical address
spaces.While it is possibleto generalizethe algorithms described in Section 3.2.1to an
N -dimensional virtual addressspaceand an M -dimensional physical addressspace,the
practicalities of GPUs and the nature of the level-set problem spacedictate the valuesof
N and M. Speci cally, GPUs are optimized to processtwo-dimensionalmemory regions
(M = 2), while volumetric level-set computations are de ned on a three-dimensional
domain (N = 3). The design also make the simplifying assumption that virtual and
physical pagesare identical in dimension and size. Thus, the virtual spaceis not parti-
tioned equally in all axes: two-dimensional pagesmust be stacked in three-dimensional

to populate the problem domain as seenin Figure 3.1.
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Figure 3.1. The multidimensional virtual and physical memory spacesusedin the paged
virtual addresssystem. The original problem spaceis V, the virtual addressspace. The
virtual pagespace,Vp, is a subdivided versionof V. Virtual memory pagesare mapped
to the physical page space,Gp, by the pagetable The inverse pagetable maps physical
pagesin Gp to virtual pagesin Vp. The collection of all elemers in Gp constitute G,
the physical memory of the hardware.

The discussionof the various addressspacesinvolved in the multidimensional virtual
addresssdheme requires a concisenotation. To begin, the spaceof K -length vectors of
integersis notated asZX . The setof all voxelsin the three-dimensionalproblem domain is
the virtual addressspace,which isde ned asV % Z3. Each of the virtual memory pagesis
a set of contiguous voxelsin V; the spaceof all virtual pagesis Vp (Figure 3.1). Similarly,
the physical addressspace,G % Z?; is subdivided into pagesto form the physical page
space,Gp. The elemeris within a virtual or physical pageare addresseddentically using
elemeris of P % Z2. In addition, a size operator is de ned for the two-dimensional and
three-dimensionalspacesdescribed above. For X in fV;Vp;G; Gpg, S[X] is a two-vector
or three-vector (according to the dimension of X ) giving the number of elemers along
ead axis of the spaceX. Note that S[Vp] = S[V]=S[P] and S[Gp] = S[G}]ES[P] (using
componert-wise division). The level-set solver system usespagesof size S[P] = (16; 16).
This sizerepresents a good compromisebetweena tight 't to the narrow computational
domain and the overhead of managing and computing pages. Empirical results validate

this choice.
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Virtual-to-ph ysical addresstranslation in an N -dimensional virtual memory system
works analogouslyto the one-dimensionalalgorithm. Virtual addressesare now three-
dimensionalposition vectorsin V and physical addressesre two-dimensionalvectorsin G.
The pagetable is a three-dimensionaltable that returns two-dimensional physical page
addresses. With these multidimensional de nitions in mind, Equation 3.1 still applies
to the vector-valued quartities. Figure 3.2 shavs an example multidimensional address
translation.

For the level-set solver in this thesis, the multidimensional virtual memory system
is implemented in part by the CPU and in part by the GPU. The CPU managesthe
page table, handles memory allocation/deallo cation requests, and translates VPNs to
PPAs. The GPU issuesmemory allocation/deallo cation requestsand computes physical
addresses.The designfurther divides the GPU tasks betweenthe various processorson
the GPU. The fragmen processorcreatesmemory allocation/deallo cation requests. The
addresstranslation implementation usesthe vertex processorand rasterizer to compute
all PAs. Sections 3.2.3 and 3.2.4 describe the architectural and exciency reasonsfor

assigningthe various virtual memory tasks to speci ¢ processors.

\
/ N/
- — 7
/

{ y
4 Page Table

NN NN
~

Virtual memory space Physical memory space

Figure 3.2. The virtual-to-ph ysical addresstranslation schemein the multidimensional
virtual memory system. A three-dimensionalvirtual address,VA, is rst translated to a
virtual pagenumber, VPN. A pagetable translates the VPN to a physical pageaddress,
PPA. The PPA speci es the origin of the physical page cortaining the physical address,
PA. The o®setis then computed basedfrom the virtual addressand usedto obtain the
“nal two-dimensional physical address,PA.
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3.2.3 Virtual-to-Ph ysical Address Translation

This section explains the details of the virtual-to-ph ysical addressschemeusedin the
GPU-basedvirtual addresssystem. Becausethe translation algorithm is executedead
time the kernel accessesnemory, its optimization is fundamertal to the successof the
method.

The simplestand most generalway to implemert the virtual-to-ph ysical addresstrans-
lation for a GPU-basedvirtual memory systemis to directly implement the computation
in Equation 3.1 and store the pagetable on the GPU as a three-dimensionaltexture. A
signi cant bene't of this approad is that it is completely general. Unfortunately, with-
out dedicated memory-managemeh hardware to acceleratethe translation, this scheme
su®ersfrom seweral exciency problems. First, the page table lookup meansthat a
dependent texture read is required for each memory access. A dependert texture is
de ned as using the result of one texture lookup to index into another. This may cause
a signi cant lossin performanceon current GPUs. Second,storing the pagetable on the
GPU consumeslimited texture memory. The third problem is that a divide, modulus,
and addition operation are required for eadh memory access.This consumescostly and
limited fragment program instructions. Note that Section 3.2.4 discussesther problems
with storing the pagetable on the GPU related to the limited capabilities of current GPU
architectures.

The solver avoids the memory and computational inexcienciesthat arise from storing
the pagetable on the GPU by examining the pattern of virtual addressegsequired by the
application's fragmert program. In the caseof the level-setsolver, the fragmert programs
usevirtual addresseswithin only a 3£ 3£ 3 neighborhood of ead active data elemer.
This meansthat ead active memory pagewill accesonly adjacert virtual memory pages
(Figure 3.3). Moreover, the remainder of this sectionshowsthat this simpli ed translation
casemakesit possibleto lift the erntire addresstranslation from the fragmen processor
to the vertex processorand rasterizer. The decisionto reconstruct virtual neighborhoods
on-the-°y rather than duplicate data lying on pageboundariesis an important aspect of
the system. The designchoicewas madeto meetour original goalsof minimizing memory
usage,minimizing memory tratc, and maintaining square16£ 16 memory pages.

Once the solver resolwes the virtual addressesused by a fragmert program, it can
determine which virtual pagesead active page will access. With this relative page

information, the GPU can perform the virtual-to-ph ysical addresstranslation without
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Figure 3.3. The substeam boundary casesusedto statically resolwe the conditionals
arising from 3 £ 3 £ 3 neighbor accessesacross memory page boundaries. The nine
substeam casesare: interior, four edges,and four corners(a). The interior caseaccesses
its neighbors from only three memory pages(b). The edgecasesequire six pages(c), and
the corner casesrequire 12 memory pages(d). Note that for reasonablylarge pagesizes,
the more cade-friendly interior casehas by far the highest number of data elemerts.

a pagetable in texture memory. The CPU makesthis possibleby sendingthe PPAs for
all required pagesto the GPU astexture coordinates. The GPU canthen usethe relative
neighbor o®setvectors to decide which adjacernt page cortains the requestedvalue (see
Figure 3.3(a)).

The GPU's task of deciding which adjacert page cortains a speci ¢ neighbor value
unfortunately requires a signi cant amourt of conditional logic. This logic must classify
ead data elemert into oneof nine boundary cases.one of the four corners,one of the four
edges,or an interior elemen (seeFigure 3.3). Unfortunately current fragmert processors
do not support conditional execution. This logic could alternativ ely be encaled into a

texture; however, this would again force the use of an expensive dependert texture read.
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Just as statically resolving virtual addressesallowed the solver to optimize the GPU

computation, all active data elemers can be preclassi ed into the nine boundary cases.
The result is that all memory addressesused in ead casewill lie on the same pages
relative to ead active page (seeFigure 3.3). In other words, the memory-page-la@ating

logic has been statically resolved by preclassifying data elemens into their respective
boundary cases. The data elemerts for these substeam casesare generatedby drawing

unigue geometry for ead case. The corner substreamcasesare represetied aspoints, the

edgesas lines, and the interior regionsas quadrilaterals.

Kapasi et al. [18] describe an excient solution to conditional executionin streaming
architectures. Their solution is to route stream elemens to di®erer processingelemens
basedon the code branch. Substreamsare merely a static implementation of this data
routing solution to conditional execution. The advantage is that the computation kernel
run on ead substreamcontains no conditional logic and is optimized speci cally for that
case. The solution additionally gainsfrom optimized cace behavior for the most common,
interior, case(77% of the data points in a 16£ 16 page). The interior data elemeris require
only three memory pagesto accessall neighbors (Figure 3.3(b)). In comparison, reading
all neighbors for an edgeelemen requires loading six pages(Figure 3.3(c)). The corner
casesrequire 12 pagesfrom disparate regions of physical memory(Figure 3.3(d)). The
corner casesaccourt for lessthan 2% of the active data elemeris.

With the useof substreams,the GPU can additionally optimize the addresscomputa-
tion by computing physical addresseswith the vertex processorrather than the fragmen
processor.Becauseall data elemers (i.e., fragmerts) useexactly the samerelative mem-
ory addressesthe o®setand physical addresscomputation stepsof Equation 3.1 can be
generatedby interpolating betweensubstreamvertex locations. The vertex processorand
rasterizer can thus perform the entire addresstranslation. This optimization distributes
computational load to underutilized processingunits and reducesthe number of limited
and expensive fragment instructions.

The algorithm described above is a highly optimized addresstranslation scheme for
evaluating neighborhoods of 3£ 3£ 3. Many applications, however, require the use of
larger neighborhoods. The substreamand vertex processoroptimizations described above
will, to a limited extert, generalizeto neighborhoods larger than 3£ 3£ 3. To process
larger neighborhoods, a separate set of substreamswould needto be generatedfor eah

layer of grid points adjacert to memory page boundaries. Theoretically, neighborhoods
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aslarge asone half of the pagesizecould be processedwith the technique, although there
may be a neighborhood sizebeyond which the cost of splitting the computation into many
small substreamsoutweighsthe bene ts. A more generaltechnique, such as performing
the full addresscomputation in the fragmert stage (as described at the beginning of this

section), may be more advantageousfor processinglarge neighborhoods.

3.2.4 Bootstrapping the Virtual Memory System

This sectiondescribesthe stepsrequired to initialize the GPU virtual memory system.
To begin, the application speci es the pagesize, S[P], the virtual pagespacesize, S[Vp],
and the fundamertal data typeto use(i.e., 32-bit °oating point, 16-bit xed point, etc.).
The virtual memory systemthen allocatesan initial physical memory bu®eron the GPU.
It also createsa pagetable, an inverse page table, a geometry engine, and a stack of
free pageson the CPU. The decisionto place the aforemertioned data structures on
the CPU is basedon the exciency concernsdescribed in Section 3.2.3 as well as GPU
architectural restrictions. These restrictions include: the GPU's lack of random write
accesso memory, lack of writable three-dimensionaltextures, lack of dynamically sized
output bu®ers,and limited GPU memory.

The pagetable is de ned to store a MemoryPagebject that cortains the verticesand
texture coordinatesrequired by the GPU to accesghe physical memory page. The inverse
pagetable is designedto store a VPN vector for ead active physical page. Figure 3.2
shaws these mappings. Note that the pagetable and inversepagetable were referred to

asthe unpackad map and packed map respectively in Lefohn et al. [29].

The vertices and texture coordinates stored in the MemoryPagebject are actually
pointers into the geometry engine. The geometry engine has the capability of quickly
rendering (i.e., processing)any portion of the physical memory domain. Thus the ge-
ometry engine must generatethe substreamsfor the set of active physical pages. The
last initialization step is the creation of the free-pagestack. The virtual memory system
simply pushesall physical pages(i.e., pointers to MemoryPagebjects) de ned by the
geometry engineonto a stad.

The application issuesGPU physical memory allocation and deallocation requeststo
the virtual memory system. Upon receiving a virtual page request, the system pops a
physical pagefrom the free-pagestack, updatesthe pagetables, and returns a MemoryPage
pointer to the application. The reverseprocessoccurs when the application deallocates

a virtual memory page.
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The level-setsolver generatesmemory pageallocation and deallocation requestsafter
ead solver iteration basedon the form of the current solution. Section 3.3.5 describes

how the solver usesthe GPU to exciently create these memory requests.

3.3 Streaming Narro w-Band GPU Level-Set Solver
This section explains how the GPU level-set solver implementation usesthe virtual
memory system described in Section 3.2 to create an excient streaming narrow-band
solver. The full details of the level-setequationsare not given here, but are instead found

in Appendix A.

3.3.1 Initialization of Computational Domain

The solver begins by initializing the sparse computational domain (Step 1 in Fig-
ure 2.1). An initial level-set volume is passedto the level-set solver by the level-set
application. The sparsedomain initialization involvesidentifying active memory pagesin
the input volume, allocating GPU memory for ead active page,then sendingthe initial
data to the GPU (Figure 3.4).

The solver identi es active virtual pagesby chedking ead data elemert for a nonzero
derivative value in any of the six cardinal directions. If any elemern in a pageconains

nonzeroderivatives, the ertire pageis activated. The initialization code then requestsa
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Figure 3.4. The level-set solver's use of the pagedvirtual memory system. All active
pages (i.e., those that contain nonzero derivatives) in the virtual page space(a) are
mapped to unique pagesof physical memory (b). The inactive virtual pagesare mapped
to the static inside or outside physical page. Note that the only data stored on the GPU
is that represened by (b).
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GPU memory page from the virtual memory system for ead active page. The level-set
data is then drawn into GPU memory using the vertex locations in eadh MemoryPage
object.

This scheme is e®ectie only becausethe input level-set volume is assumedto be a
clamped distancetransform|meaning that regionson or nearthe isosurfacehave nonzero
gradients while regionsoutside or inside the surfacehave gradients of zero(seeFigure 3.5).
The outside voxels have a value of zero (black) and the inside oneshave a value of one
(white). The algorithm described in Section 3.3.2 describes how the clamped distance
transform is maintained during the level-set computation.

The inactive virtual pagesdo not needto be represerted in physical memory. If an
active data elemen queriesan inactive value, however, an appropriate value needsto be
returned. Becauseall inactive regions are either uniformly black or white, the system
handles this boundary condition problem by de ning a special, inactive page state. A
virtual pagein this state is mappedto oneof two static physical pages. One of thesestatic
pagesis black, represerting regionsoutside of the level-setsurface. The other static page
is white and represens regionsinside the level-setsurface. The pagetable contains these
many-to-one mappings, but the inverse page table does not store a valid entry for the
static pages.Note that this boundary problem could have alternativ ely beensolved using
single pixels instead of ertire pages; however, this lack of uniformity in memory page

sizeswould have complicated the pagetable represerations. Alternativ ely, the problem

Active Inside

Outside
Distance from Isosurface

Figure 3.5. The level-set embedding, A, is a clamped distance transform, i.e., jr Aj is
nonzeronear the surfacemodel and zero elsewhere.
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could have beensolved by creating substreamsfor the active elemens on the boundary
of the active set; however, this would have unnecessarilyadded a number of additional

substreamrender passeso the computation.

3.3.2 The Distance Transform Computation on the GPU

The GPU-basedlevel-setsolver borrows ideasfrom both the narrow-band and sparse-
“eld algorithms, but implements a new solution that conformsto the architectural re-
strictions of GPUs. Both of these previous, CPU-based, methods maintain a distance-
transform embedding (i.e., managelevel-set density) by a seriesof heterogeneousopera-
tions that are not particularly excient on the GPU. In order to solve this problem, the
streaming level-set method maintains a distance-transform embedding by intro ducing an
additional speedterm G; into the level-setPDE Equation 2.3. This additional speedterm
pushesthe level setsof A, either closertogether or farther apart, sothat they resenble
an appropriately scaled clamped distance transform (CDT). The CDT has a constarnt
level-set density within a prede ned band and ensuresthat voxels near the isosurface
have nite derivatives while those farther away have gradient magnitudes of zero. As
described in the proceedingsection, the identi cation of zero-derivative regionsis critical

for an excient solver implementation. This resaling speedterm, G,, is computed as
Gr = Agai Ar Aj; (3.2)

where g4 is the target gradient magnitude within the computational domain. This target
parameter is set basedon the numerical precision of the level-set data. By setting ga
suzciently high, numerical errors caused by under°ow can easily be avoided. It is
important to note that G, is strictly a numerical construct; it doesnot a®ectthe movemert
of the zero level set, i.e., the surface model. This embedding-rescalingcomputation is
similar to the technique discussedin Fedkiw et al. [12].

In conclusion,Equation 3.2 hasthe following three properties. First G, is proportional
to A (i.e., G, approadeszeroasA approadeszero), and therefore adding G, to the speed
terms in the level-set computation will not move the level-set surface (assumingk = 0).
Second,becausethe up-wind scheme [34] maintains monotonicity in the embedding, no
new extrema will be created. As sud, the clamping properties of the original embedding

will be maintained. Lastly the xed point of G, is the distance transform scaledby ga.
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3.3.3 Level-Set Computation
The GPU next computesthe level-set computation (Step 2 of the sparsealgorithm,
Figure 2.1). The details of the level-set discretization used by the level-set solver are
givenin Appendix A. This section givesa high-level overview of the computation. The

level-setupdate proceedsin the following steps:

A Compute 1st and 2nd partial derivatives.
B Compute N level-set speedterms.
C Update level-set PDE.

The derivative passesn Step A above usethe substream-basedyirtual-to-ph ysical ad-
dressschemedescribed in Section 3.2.3. The derivativesare computed in nine substream
passesgad of which outputs to the samefour bu®ers. The speedfunction computations
in Step B are application-dependert. Example speedterms include the curvature compu-
tation described in Equation 2.4, the rescalingterm described in Equation 3.2, and the
data-dependert term described in Equation 4.1. There will be zeroor more render passes
for eat speed function. The level-set update (Step C) is simply the up-wind scheme
described in Appendix A, which is computed in a single pass. Note that additional GPU
memory must be allocated to store the intermediate results accurrulated in StepsA and
B before they are consumedin Step C. The solver also performs register allocation of

temporary bu®ersto minimize GPU memory usage.

3.3.4 GPU Implemen tation Details

The level-set solver and volume renderer are implemented in programmable graphics
hardware using vertex and fragmernt programs on the ATl Radeon 9800 GPU. The
programs are written in the OpenGL ARB _vertex_program and ARB _fragment _program
assenbly languages.

Seweral details related to render passoutput bu®ersare critical to the performanceof
the level-set solver. First is the ability to output multiple, high-precision 4-tuple results
from a fragmen program. Writing 16 scalaroutputs from a singlerender passenablesthe
solver to perform the expensiwe three-dimensionalneighborhood reconstruction only once
and usethe gathered data to compute the derivativesin a single pass. Second,the solver
avoids the expensive changebetweenrender targets [23] (i.e., pixel bu®ers)by allocating
a single pixel bu®erwith many render surfaces (front, badk, aux0, etc.) and using each

surfaceas a separateoutput bu®er.
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Lastly, there is a subtle speed-\ersus-memorytrade-o®that must be carefully consid-
ered. Becausethe physical-memorytexture canbe aslarge as204&, storing intermediate
results (e.g., derivatives, speed values, etc.) during the computation can require a large
amount of GPU memory. This memory requiremert can be minimized by performing the
level-set computation in subregions. The intermediate bu®ersmust then be only the size
of the subregion. This partitioning does reduce computational exciency; however, and
sothe subregionsare made as large as possible. The solver currently use512 subregions

when the level-settexture is 2048 and usea single region when it is smaller.

3.3.5 Update of Computational Domain

After ead level-set update, the solver determines which virtual pagesneedto be
added-to or removed-from the active domain. The solver accomplisheghis by aggregating
gradient information from all elemerns in ead active page. The GPU must compute this
information becausethe level-set solution exists only in physical memory. The active set
must be updated by the CPU, however, becausethe pagetable and geometry engineexist
in CPU main memory. In addition, the amount of information passedfrom the GPU to
the CPU must be kept to a minimum becauseof the limited bandwidth between the
two processors.This section gives an overview of an algorithm that works within these
constraints. Appendix B explains the full details of the algorithm.

The GPU creates a memory allocation/deallocation request by producing a small
image (of size S[Gp]) with a single-byte pixel per physical page. The value of ead pixel
is a bit code that encapsulateghe activation or deactivation state of ead pageand its six
adjacert neighbors (in Vp). The CPU readsthis small (< 64kB) messagedecadesit, and
submits the allocation/deallo cation requeststo the virtual memory system (Figure 3.6).

The GPU createsthe bit-codeimageby rst computing two, four-componert neighbor
information bu®ers of size S[G] (Step A of Figure 3.6). This computation usesthe
previously-computed, one-sidedderivatives of A to identify the required active pages. A
page must be activated if it contains elemens with nonzero gradient magnitudes. The
automatic mipmapping GPU feature is usedto down-sample the resulting bu®ers(i.e.,
aggregatedata samples)to the page-spacamage (Step B in Figure 3.6). The nal GPU
operation combinesthe active pageinformation into the bit code (Step C in Figure 3.6). A
fragment program performsthis step by emulating a bit-wise OR operation via conditional

addition of powers of two. Finally, in step D of Figure 3.6, the CPU readsthis message
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Figure 3.6. The GPU's creation of a memory allocation/deallo cation request. Step A
usessolver-speci ¢ data to create two bu®erscontaining the active state of ead data
elemen and its adjacent neighbors. Step B usesautomatic mipmapping to reduce the
bu®ers from size S[G] to the physical page spacesize, S[Gp]. Step C combines the
information from the two down-sampled state bu®ersinto an eight-bit code for ead
pixel. This code encapsulateswhether or not ead active virtual memory page and its
adjacent neighbors should be enabled. In step D, the CPU reads the bit-code bu®er,
decdesit, and allocates/deallocates pagesas requested.

from the GPU.

Note that the useof automatic mipmapping placessomerestrictions on the maximum
tile sizedue to quantization rounding errors that arise when down-sampling 8-bit values.
This limitation can be relaxed by using a 16-bit xed-point data type. Alternativ ely,
°oating-p oint valuescan be usedif the down-sampling is performed with fragmert pro-

gram passesinstead of automatic mipmapping.

3.4 Volume Rendering of Packed Data
The direct visualization of the level set evolution is important for a variety of level-set
applications. For instance, in the context of segmemation, direct visualization allows
a user to immediately assessthe quality and accuracy of the pending segmeiation
and steer the ewlution toward the desired result. Volume rendering [10, 31, 42] is a
natural choice for visualizing the level-set surface model, becauseit doesnot require an

intermediate geometric extraction, which might limit interactivity. If one were to use
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marching cubes, for instance, a distinct triangle mesh would needto be created (and
rendered) for ead iteration of the level-set solver. The implemented solver, therefore,
includes a volume renderer, which producesa full three-dimensional (transfer-function
based)volume rendering of the ewlving level set on the GPU [22].

For rendering the ewlving level-set model, the new renderer use a variant of tradi-
tional two-dimensional texture basedvolume rendering [6]. The renderer modi es the
convertional approac to render the level-set solution directly from the packed physical
memory layout, which is physically stored in a single two-dimensionaltexture. Because
the level-set data and physical page con gurations are dynamic, it would be inetcient
to precompute and store the three separate versions of the data, sliced along cardinal
views, asis typically donewith two-dimensionaltexture approades. Instead the renderer
reconstructs theseviews ead time the volume is rendered. Note that this new technique
also enablesvolume rendering from a dataset stored in a single set of two-dimensional
slices.

The volume rendering algorithm utilizes a two passapproac for reconstruction and
rendering. Figure 3.7 illustrates the steps involved. An additional o®-screenbu®er
cades two reconstructed neighboring slices cortaining the level set solution and its
gradient (Figure 3.7 A). During the rendering phasearbitrary slicesalong the preferred
slice direction are interpolated from these neighboring slices (Figure 3.7 B). Once all
interpolated slicesbetweenslicei and i j 1 are renderedand composited, the next slice
(i + 1) is reconstructed. This newly reconstructed slice replacesthe cadched slice,i j 1.
The GPU then renders and composites the interpolated slices(i.e., those between slice
i+ 1andi). This pattern cortinuesuntil all sliceshave beenreconstructed and rendered.

When the preferred slice axis, basedon the viewing angle, is orthogonal to the virtual
memory page layout, the renderer reconstructs two-dimensional slices of the level set
solution and its gradient using a textured quadrilateral for eath page, as shown in
Figure 3.8 A. On the other hand, if the preferred slice direction is parallel to the virtual
page layout, the algorithm rendersa row or column from ead page using textured line
primitiv es,as in Figure 3.8 B. In both cases,slicesare reconstructed into a pixel bu®er
which is bound as a texture in the rendering pass. Theseslicesare reconstructed at the
same resolution as level set solution. For exciency, the renderer reusesdata wherewer
possible. For instance, lighting for the level-setsurface,evaluated in the rendering phase,

usesgradient vectors computed during the level-set update stage.



28

Sice
direction

A

A Level Set Data
o = : Color
P — & opacity
E/ — ; = ~ B
; __ — H —
" " .
/ = Transfer Function
P = Reconstructed &Lighting
slices (F, DF)

Figure 3.7. Two passrendering of padked volume data. In step A, a two-dimensional
slice (i) is reconstructed from the physical page (packed) layout, Gp. In step B, one or
more intermediate slicesbetweeni and i j 1 are interpolated, transformed into optical
properties (via the transfer function), lit, and renderedfor the current view. The next
iteration beginsby reconstructing slicei + 1, replacingi i 1, and soon.
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Figure 3.8. Reconstruction of a slice for volume rendering the padked level-set model:
(a) When the preferred slicing direction is orthogonal to the virtual memory pagelayout,
the pages(shown in alternating colors) are draw into a pixel bu®eras quadrilaterals. (b)
For slicing directions parallel to the virtual pagelayout, the pagesare drawn onto a pixel
bu®er as either vertical or horizontal lines.
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In the rendering phase, the algorithm leveragesthe hardware's bilinear Ttering for
in-plane interpolation of the reconstructed level set slice. Trilinear interpolation of an
arbitrary slice betweentwo adjacert reconstructed slicesis accomplishedby conbining
them, i.e. performing linear interpolation along the preferred slice direction, in the
fragment program. This same fragment program also evaluates the transfer function

and lighting for the interpolated data.



CHAPTER 4
SEGMENT ATION APPLICA TION

4.1 Intro duction

Segmemation is an important part of volume visualization and analysis. In the
IEEE Visualization 2002panel entitled \V olume Renderingin Medical Applications", Bill
Lorensenof General Electric Researth and Developmert made an important obsenation
about volume rendering: \Its time to move beyond pretty pictures and move more toward
image analysis." With the rising importance of quartitativ e volume analysis, will come
an increasedrole for tools that utilize visualization to achieve better quartitativ e results.

This chapter describes sudh a tool; an interactive volume segmemation and visu-
alization application that usesthe GPU-based level-set solver and volume rendering
techniques described in Chapter 3. Section 4.2 describes the details of the application,
while Section 4.3 preseris a performance analysis of the system. Section 4.4 preseris a
user study usesthat evaluates the e®ectivenessof the interactive segmemation tool for

medical segmemation.

4.2 Volume Segmentation and Visualization
Application
4.2.1 Level-Set Formulation for Segmentation
For segmening volume data with level sets,the speedusually consistsof a combination
of two terms [32, 56]

%: ir i @)+ (1 ®r ¢j:21 ; (4.1)
where D is a data term that forcesthe model to expand or cortract toward desirable
featuresin the input data (which is also called the source data), the term r ¢(r A5r A))
is the mean curvature H of the surface, which forcesthe surfaceto have lessarea (and
remain smooth), and ® 2 [0; 1] is a free parameter that controls the degreeof smoothness

in the solution.
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This combination of a data- tting speedfunction with the curvature term is critical
to the application of level setsto volume segmemation. Most level-setdata terms D from
the segmetmation literature are equivalent to well-known algorithms suc as isosurfaces,
°ood I, or edgedetection when used without the smoothing term (i.e., ® = 1). The
smoothing term alleviates the e®ectsof noise and small imperfectionsin the data, and
can prevert the model from leaking into unwanted areas(Figure 4.1). In the context of
volume analysis, the level-setsurfacemodels provide seweral capabilities that complemernt
volumerendering: local, user-de nedcortrol; smaooth surfacenormals for better rendering
of noisy data; and a closedsurfacemodel, which can be usedin subsequeh processingor
for quartitativ e shape analysis.

For the work in this thesisthe segmemation application usesa simple speedfunction
to demonstrate the e®ectivenessof interactivity and real-time visualization in level-set
solvers. The speedfunction created for this work depends solely on the greyscalevalue
input data | at the point %:

D(I)=2i jli Tj; (4.2)

where T controls the brightnessof the regionto be segmened and 2 cortrols the range of
greyscalevaluesaround T that could be consideredinside the object. In this way a model
situated on voxels with greyscalevaluesin the interval T § 2 will expandto enclosethat
voxel, whereasa model situated on greyscalevaluesoutside that interval will contract to
excludethat voxel. The speedterm is gradual, asshown in Figure 4.2, and thus the e®ects
of the D diminish asthe model approacesthe boundariesof regionswith greyscalelevels

within the T § 2 range, and the e®ectf the curvature term will berelatively larger. This

Figure 4.1. The use of a curvature constraint (speed function) in the level-set
computation to prevent segmemation \leaking." This example shavs one slice of a
three-dimensionalMRI segmetiation computation: (a) The sphericalinitialization. (b) A
model expandsto 1l the tumor but leaksthrough gapsand expandsinto other anatomy.
(c) The samescenariowith a degreeof curvature prevents unwanted leaking. The level
set isosurfaceis shown in white.
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Figure 4.2. A speedfunction basedon image intensity causesthe model to expand over
regionswith greyscalevalueswithin the speci ed range and cortract otherwise.

choice of D correspondsto a simple, one-dimensionalstatistical classi er on the volume
intensity [28].

To control the model a user speci es three free parameters, T, 2, and ®, aswell asan
initialization. The user generally draws a spherical initialization inside the region to be
segmered. Note that the user can alternativ ely initialize the solver with a preprocessed

(thresholded, °ood Tled, etc.) version of the sourcedata.

4.2.2 Interface and Usage

The application in this thesisconsistsof a graphical userinterface (GUI) that presens
the user with two slice viewing windows, a volume renderer, and a cortrol panel (Fig-
ures4.3 and 4.4). Many of the cortrols are duplicated throughout the windows to allow
the user to interact with the data and solver through these various views. Two and
three-dimensional represenations of the level-set surface are displayed in real time asiit
ewlves.

The rst two-dimensionalwindow displays the current segmemation as a yellow line
overlaid on top of the source data. The secondtwo-dimensional window displays a
visualization of the level-setspeedfunction that clearly delineatesthe positive (blue) and
negative (black) regions. The rst window can be probed with the mouseto accomplish
three tasks: set the level set speedfunction, set the volume rendering transfer function,

and draw three-dimensionalsphericalinitializations for the level-setsolver. The rst two
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Figure 4.3. A depiction of the userinterface for the volume analysis application. Users
interact via slice views, a three-dimensionalrendering, and a control panel.
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Figure 4.4. The actual userinterface for the volume analysis application. The top left
window shaws the visualization of the speed function. The top right window shows a
slice of the MRI sourcedata with the current level-set solution in yellow. The lower-left
window shaws a volume rendering of the MRI sourcedata (blue), the samedata projected
onto a clipping plane (grey), the current level-set surface (brown), and the intersection
of the current level-set solution with the clipping plane (yellow).
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are accomplishedby accunulating an average and variance for values probed with the
cursor. In the caseof the speed function, the T is set to the averageand 2 is set to
the standard deviation. Userscan modify thesevalues, via the GUI, while the level set
deforms. The sphericaldrawing tool is usedto initialize and/or edit the level-setsurface.
The user can place either white (model on) or black (model o®) spheresinto the system.

The volume renderer displays a three-dimensionalreconstruction of the current level-
setisosurface(seeChapter 3.4) aswell asthe input data. In addition, an arbitrary clipping
plane, with texture-mapped sourcedata, can be enabledvia the GUI (Figure 4.4). Just
as in the slice viewer, the speed function, transfer function, and level-set initialization
can be setthrough probing on this clipping plane. The crossingof the level-setisosurface
with the clipping plane is also shavn in bright yellow.

The volume renderer usesa two-dimensionaltransfer function to render the level set
surfaceand a three-dimensionaltransfer function to render the sourcedata. The level-set
transfer function axesare intensity and distancefrom the clipping plane (if enabled). The
transfer function for renderingthe original data is basedon the sourcedata value, gradient
magnitude, and the level-setdata value. The latter is included sothat the level set model
can function as a region-of-interest speci er. All of the transfer functions are evaluated
on-the-°y in fragmen programs rather than in lookup tables. This approac permits
the useof arbitrarily high-dimensional transfer functions, allows run-time °exibilit y, and
reducesmemory requiremerts [23]. The GUI hasadditional controls for starting/stopping
the solver, enabling a region-of-interest volume rendering mode, setting opacity of the
volume and clipping plane, and saving the three-dimensional segmetmation to Te.

The interactiv e level-setsolver and volume rendering systemis demonstratedwith the
following three data sets: a brain tumor MRI (Figure 4.5, 4.6), an MRI scanof a mouse
(Figure 4.7), and transmission electron tomography data of a gap junction (Figure 4.8).
In all of these examplesa user interactively cortrols the level-set surface evolution and
volume rendering via the multiview interface. The initializations for the tumor and
mousewere drawn via the userinterface while the gap junction solution was seededwith

a thresholded version of the sourcedata.
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Figure 4.5. Interactive level-set segmemation of a brain tumor from a 256£ 256£ 198
MRI with volume rendering to give context to the segmeted surface. A clipping plane
(bottom) shows the user the sourcedata, the volume rendering, and the segmemation
simultaneously. The segmemation and volume rendering parametersare set by the user
probing data valueson the clipping plane.
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Figure 4.6. Interactivelevel-setsegmemation of the cerebralcortex from a 256€ 256€ 198
MRI with volume rendering to give corntext to the segmered surface. The MRI data is
also projected onto a clipping plane, on which the user can probe to cortrol the level-set
parameters.
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Figure 4.7. The top image showvs a volume rendering of a 2566 MRI scan of a
mousethorax. Note the level set surface which is deformedto segmem the liver. The
bottom image shows a volume rendering of the vasculature inside the liver. Both images
are rendered using the same transfer function with the level-set surface serving as a

region-of-interest speci er.
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Figure 4.8. Segmemation and volume rendering of 512£ 512£ 61 three-dimensional
transmission electron tomography data. The picture shows cytoskeletal membrane
extensionsand connexins (pink surfacesextracted with the level-set models) near the
gap junction betweentwo cells (volume renderedin cyan).
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4.3 Performance Analysis

The GPU-based level-set solver adchieves a speedup of 10{15 times over a highly-
optimized, sparse- eld, CPU-based implementation [52]. The user study preseried in
Section 4.4 demonstratesthat the new solver runs interactive rates for the tumor seg-
mentations performed in the study. Interactivity is de ned here as being fast enough
that the segmemation times are almost ertirely basedon user time rather than solver
time. Alternativ ely, usersgenerally regard a solver running at rates greater than steps
per secondas interactive.

All benchmarks were run on an Intel Xeon 1.7 GHz processorwith 1 GB of RAM
and an ATl Radeon9800Pro GPU. All timings include the complete computation, i.e.,
both the virtual memory systemupdate and the level-set computation are included. For
a 256£ 256£ 175 volume, the level-set solver runs at rates varying from 70 steps per
secondfor the tumor segmemation to 3.5 stepsper secondfor the nal stagesof the cortex
segmetmation (Figure 4.5). In cortrast, the CPU-based, sparse eld implemertation ran
at 7 stepsper secondfor the tumor and 0.25stepsper secondfor the cortex segmemation.

The speedof the solver is approximately 80% dependert on the core clock rate of the
GPU, 15%dependen on the GPU's memory speedand only 5% dependert on the speed
of the AGP bus. These dependency measureswere obtained by measuring the solver's
computation rate while changing the GPU's core and memory clock speeds[51] and by
changing the speedof the AGP bus. These and other pro ling techniques are described
by NVIDIA [9]. Note that the 80% dependenceon core clock speedand 15% dependence
on memory speedindicate that the speedof the solver will cortinue to improve as GPUs
increasein speedand/or add additional computational elemers.

The speed of the solver is bound almost entirely by the fragmen stage of the GPU.
In addition, the speed of the solver scaleslinearly with the number of active voxels in
the computation. Creation of the bit vector messageconsumesapproximately 15% of the
GPU arithmetic and texture instructions, but for most applications the speedupover a
denseGPU-basedimplementation far eclipsesthis additional overhead.

The amount of texture memory required for the level-setcomputation is proportional
to the surfacearea of the level-set surfaceli.e., the number of active pages. Tests have
shown that for many applications, only 10%-30%of the volume is active. To take full
advantage of this savings, the total sizeof physical memory, S[G], must increasewhen the

number of allocated pagesgrows beyond the capacity of the currently allocated physical
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memory. The current implementation performs only static allocation of the maximum
physical memory space,but future versionscould easily realizethe above memory savings.
Chapter 5 discusseshangesto GPU display driversthat will facilitate the implementation
of this feature.

In comparisonto the depth-culling-based sparsevolume computation presened by
Sherbondy et al. [47], the packing scheme preserted herein guarantees that very few
wastedfragmerts are generatedby the rasterization stage. This is especially important for
sparsecomputations on large volumes|where the rasterization and culling of unusedfrag-
ments could consumea signi cant portion of the executiontime. In addition, the padcking
strategy can processthe ertire active data set simultaneously, rather than slice-by-slice.
This improves the computationally exciency by taking advantage of the GPU's deep
pipelines and parallel execution. The padking algorithm should also be able to process
larger volumes, due to the memory savings discussedabove. The padking algorithm,
howewer, does incur overhead assaiated with maintaining the padked tiles, and more
experimentation is necessaryto understand the circumstancesunder which ead approad
is advantageous. Furthermore, they are not mutually exclusive, and Chapter 5 discusses

the possibility of using depth culling in combination with the paded represenation.

4.4 Tumor Segmentation User Study
4.4.1 Intro duction

This section presernis a evaluation study of the GPU-based level-set segmeiation
application [7, 27]. More than simply evaluating the GPU-basedtool with respectto CPU-
basedapplications, the study shows that the combination of interactivit y, visualization,
and level-set computation createsa tool that is more generaland faster than previously
existing options.

The purposeof the userstudy wasto determine if the new level-set solver system can
produce volumetric delineations of brain tumor boundariescomparableto those done by
experts (e.g., radiologists or neurosurgeonsysing traditional hand-cortouring. The GPU-
based segmermation application is applied to the problem of brain tumor segmetation
using data from the Brain Tumor Segmentation Database which is made available by
the Harvard Medical School at the Brigham and Women's Hospital (HBW) [19, 54]. The
HBW databaseconsistsof 10 three-dimensional 1.5T MRI brain tumor patient datasets

selectedby a neurosurgeonas a represettativ e sampling of a larger clinical database. For
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ead of the 10 cases,there are also four independent expert hand segmemations of one
randomly selectedtwo-dimensionalslice in the region of the tumor.

The userstudy consistsof nine tumor cases:three meningioma (casesl-3) and six low
grade glioma (4-6, 8-10). One case,number 7, was omitted becausea quick inspection
showedit that its intensity structure wastoo complicatedto be segmeted by the proposed
toollsuc h a problem remains as future work. The data used in the study was not
preprocessé, and there are no hidden segmemation parametersjall system parameters
were set by the usersin real time, asthey interacted with the data and the models.

Five userswere selectedfrom amongUniversity of Utah sta®and students and trained
brie°y to usethe software. Each user was asked to delineate the full, three-dimensional
boundaries of the tumor in ead of the nine selectedcases. The users were given no
time limit and their time to complete ead tumor segmemation was recorded. None of
the participating userswere experts in reading radiological data. The goal of the study
was not to test for tumor recognition (tissue classi cation), but rather to test whether
parameters could be selectedfor the segmemation algorithm to produce a segmetation
which mimics those done by the experts. To control for tumor recognition, we allowed
ead userto refer to a single slice from an expert segmetation. Usersweretold to treat
this hand segmemation slice as a guide for understanding the di®erencebetweentumor
and nontumor tissue. The underlying assumptionis that an expert would not needsuch

an example.

4.4.2 Metho dology

The study considersthree factors in evaluating the new segmemation tool [53]: validity
of the results (accuracy), reproducibility of the results (precision), and exciency of the
method (time). To quantify accuracya ground truth is establishedfrom the expert seg-
mented slicesusing the STAPLE method [55]. This method is essetially a sophisticated
averaging schemethat accourts for systematic biasesin the behavior of experts in order
to generatea fuzzy ground truth (W) for eadt case. The ground truth segmetmation
values for ead caseare represerted as an image of values between zero and one that
indicates the probability of ead pixel being in the tumor. The STAPLE method also
gives sensitivity and speci city parameters (p and g respectively) for ead expert and
ead case. Sensitivity is the fraction of pixels correctly classi ed aslying inside the object

boundary, and speci city is the fraction of pixels correctly classi ed as lying outside the
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object boundary. Each subject generatesa binary segmetiation which, comparedagainst
the ground truth, givesvaluesto obtain p and g for that subject. A third metric is also
consideredfor the analysis, total correct fraction which is the total number of correctly
classi ed pixels (weighted by W) as a percertage of the total size of the image.

To assessnteroperator precisionin segmenmations, the study usesthe metric proposed
by [53], which consistsof pairwise comparisonsof the cardinality of the intersection of the
positive classi cations divided by the cardinality of the union of positive classi cations.
To analyzeezxciency, the study calculatesthe averagetotal time (usertime plus processing

time) taken for a segmemation.

4.4.3 Results

For a typical segmemation of a tumor using the new tool a user scrolls through slices
until they nd the location of the tumor. With a mouse,the user queriesintensity values
in the tumor and setsinitial valuesfor the parametersT and 2 basedon those intensity
values. They initialize a spherenear or within the tumor and initiate deformation of
that spherical model. As the model deforms the user scrolls through slices, observing
its behavior and modifying parameters. Using the immediate feedbak they get on the
behavior of the model, they continue modifying parametersuntil the model boundaries
appear to align with those of the tumor. In a typical 5-minute sessiona userwill modify
the model parametersbetween 10 and 30 times.

Figures 4.9, 4.10, and 4.11 show graphs of averagep, g, and c valuesfor the experts
and the usersin the study. Error barsrepresen the standard deviations of the assiated
valuesfor the experts and the usersin the study.

The performance of the experts and the usersvaries caseby case,but in almost all
casesthe performanceof the userswas within the range of performancesof the experts.
The average correct fraction of the users was better than the experts in 4 out of 9
cases.A generaltrend is that the participating userstended to underestimate the tumor
relative to the experts, as indicated by lower valuesof p. This is consistert with other
experienceswith hand segmeiations and level-set models|with hand contouring users
tend to overestimate structures, and with level setsthe curvature term tends to reduce

the size of convex structures [8].
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Figure 4.9. Sensitivity (the fraction of pixels correctly classi ed as inside the object
boundary) results from the user study compare the interactive, GPU-based level-set
segmetation tool with expert hand contouring. The results shaov that users of the
semi-automatic tool produced segmetations that were within the error bounds of the
expert hand contours in most cases. The tool also showved an overall slightly lower
sensitivity, meaningthat the size of the segmetiations is slightly smaller.
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Figure 4.10. Speci city (the fraction of pixels correctly classi ed as outside the object
boundary) results from the user study compare the interactive, GPU-based level-set
segmetation tool with expert hand contouring. The results shav that users of the
semiautomatic tool produced segmemations that were within the error bounds of the
expert hand cortours in most cases. The tool also shaved an overall slightly higher
speci city, meaningthat the size of the segmemations is slightly smaller.
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Figure 4.11. The total fraction of correctly classi ed pixels (combination of sensitivity

and speci city) for the nine tumor casessegmened by the participating users.
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The segmemations in the user study shov a much higher degreeof precision than
the expert hand segmemations. Mean precision [53] across all users and caseswas
94:04%8 0.04%while the meanprecisionacrossall experts and casesvas82:65%8 0.07%.
Regarding exciency, the averagetime to complete a segmetation (all users,all cases)
was 6 § 3minutes. Only 5% 10% of this time is spent processingthe level-set surface.
This compares favorably with the 3-5 hours required for a typical three-dimensional
segmermation done by hand.

The accuracy and precision of subjects using the new tool compareswell with the
automated brain tumor segmetation results of Kaus, et al. [19], who usea supersetof the
samedata usedin the study. They report an averagecorrect volume fraction of 99:68%8
0:29%, while the averagecorrect volume fraction obtained by the participating userswas
99:78%8 0:13%. Their method required similar averageoperator times (5-10 minutes), but
unlike the proposedmethod their classi cation approac required subsequen processing
times of approximately 75 minutes. That method, like many other segmemation methods
discussedin the literature, includesa number of hidden parameters, which were not part
of their analysis of timing or performance.

Thesequartitativ e comparisonswith experts pertain to a only single two-dimensional
slice that was extracted from the three-dimensional segmetiations. This is a limitation
due to the scarcity of expert data. Experienceshaws that computer-aided segmenation
tools perform relatively better for three-dimensionalsegmeiations becausethe hand con-
tours typically show signsof interslice inconsistenciesand fatigue. Figures 4.12and 4.13
respectively shov a segmeiation by an expert with hand contouring and a segmetation

done by one of the usersof the GPU-basedlevel-set segmemation tool.
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Figure 4.12. An expert hand segmetmation of a tumor from the Harvard Brigham and
Women's databaseshaws signi cant interslice artifacts.

Figure 4.13. A three-dimensional segmemation of the sametumor from one of the
subjects in the user study performed using the interactive segmemation tool described in
this thesis.



CHAPTER 5
CONCLUSIONS

5.1 Summary

This thesis demonstratesa new tool for interactive volume exploration and analysis
that combinesthe quartitativ e capabilities of deformableisosurfaceswith the qualitativ e
power of volume rendering. By ezxciently leveraging programmable graphics hardware,
the level-set solver operates approximately 15 times faster than previous solutions and
is therefore interactive for moderately sized volumes (e.g., 128%{256%). This mapping
relies on an excient multidimensional virtual memory system to implement a time-
dependen, sparsecomputation scheme. The memory mappings are updated via a novel
GPU-to-CPU messagepassingalgorithm. The GPU rendersthe level-set surface model
directly from this padked texture format. This new rendering technique also enablesfull
volume rendering from volume data stored as a single set of two-dimensionalslices. The
interactive segmemation tool is evaluated by meansof a brain tumor segmemation user
study. The study shows that, when comparedto the segmemations produced by expert
hand cortouring, users of the new tool are able to quickly produce more precise and

equivalently accurate segmetations.

5.2 Future Work

Future extensionsand applications of the level-set solver include the processingof
multiv ariate data as well as the application of the solver to other level-set problems.
Examples include surface reconstruction, surface processing, and surface tracking in
computational °uid dynamics simulations. Many of these extensionsinvolve changing
only the speedfunctions. Additions to the userinterface, such asthree-dimensionalpaint
operations into the parameter volumes, may also enable an additional level of control
over the computation. Additionally , the systemdescribed in this thesis enforcesmemory
coherenceat the granularity of a 16£ 16 memory page. This property might beinteresting

to apply to CPU-basedsparsecomputations. The local memory accesspatterns, lack of
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conditionals, and absenceof pointer dereferenceamight result in a CPU-based solution
that outperforms current sparse- eld methods.

There are multiple improvemerts that could be made to the memory and computa-
tional exciency of the solver. First, it may be worth achieving an even narrower band of
computation around the level-setmodel. This is possibleby using depth culling to avoid
computation on inactive elemeris within ead active page[47]. Implementing this depth
culling requiresa GPU memory model in which an arbitrary number of data bu®erscan
accessa single depth bu®er. The secondoptimization is to allow the total amount of
available physical memory to changeat run time and grow to the limits of GPU memory.
This requires spreading physical memory acrossmultiple two-dimensionaltextures (i.e.,
creating a three-dimensional physical memory space). The proposed super bu®er [37]
OpenGL extension supports both of these proposedoptimizations.

The GPU virtual memory abstraction also indicate promising future researd. | am
currently beginning work on a more general virtual memory implementation that fully
abstracts N -dimensional GPU memory. The goal is to provide an API that allows a
GPU application programmer to specify an optimal physical and virtual memory layout
for their problem, then write the computational kernelsirrespective of the physical layout.
The kernelswill specify memory accessewia abstract memory accessnterfaces,and an
operating-system-like layer will replace these memory accesscalls with the appropriate
address translation code. This layer should also optimize computational kernels by
automatically mapping portions of the kernel to the vertex processorand rasterizer,
generatesubstreamswhere appropriate, and perform other optimizations.

This thesis preseris an e®ective solution for solving time-dependert narrow-band
partial di®erenial equations on the GPU. As the emerging eld of general purpose
computation on GPUs (GPGPU) movesforward, one of the most challenging questionsis,
\How generalshouldthe programming model become?" It is inevitable and desirablethat
the programming model for GPUs be lifted to a higher level. It is also critical, however,
that the forthcoming abstractions not hinder e®ectie use of the underlying hardware.
For example, the fully generalmultidimensional virtual memory scheme proposedabove
may already be too generalto guaranee excient program execution. It is possiblethat
the best high-level GPU programming solution will be domain-speci ¢ infrastructures
(e.g., a framework for solving discrete partial di®ereriial equations). It is also possible,

however, that a highly-optimizing programming languageor framework for GPUs can be
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de ned by precisely de ning the inherent restrictions required for etcient computation

on streaming architectures.



APPENDIX A

DISCRETIZA TION OF THE LEVEL-SET
EQUA TIONS

A.1 Intro duction
This appendix describes the discretization of equation 2.3 and the curvature com-
putation. Equation 2.3 is discretized using the up-wind scheme [34] and compute the

curvature of the level-set surfaceusing the di®erence of normals method [58].

A.2 Level-Set Discretization
To begin Equation A.1 describes the nite di®erencederivatives required for the
level-set update and curvature computation. The neighborhood, u, from which these

derivativesare computed is speci ed with the numbering scheme

678
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Curvature is then computed using the above derivatives. The two normals, n* and

ni , are computed by
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respectively. The componerts of the divergencefrom equation 2.4 are then computed as
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and
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Finally, Equation A.8 estimatesH :
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The upwind approximation to r A is then computed using D}, D;, D;, D, D),

and D} . To begin,
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is computed followed by
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(A.10)

(A.11)

whereF isthe linear combination of all speedfunctions (e.g. meancurvature, the rescaling

term G;, etc). Section4.2.1 describesthe speedterms usedin the level-set segmeitation

application.

The last step in the upwind scheme computesA(t + 4 t) by

At+41t)= At)+ 4tFjr A

(A.12)



APPENDIX B

A BRUTE-F ORCE, GPU-BASED
THREE-DIMENSIONAL
LEVEL-SET SOLVER

B.1 Design

This appendix coversthe designof a brute-force, GPU-basedthree-dimensionallevel-
set solver designedfor the ATl Radeon 8500 GPU. The solver computes the level-set
PDE (seeAppendix A at ead voxel, i.e., it is not a narrow-band solver. The solver also
includessegmemation speedfunctions describedin Section4.2,including the second-order
curvature term.

The level-set volume is stored in a set of two-dimensional slices (i.e., pbu®er tex-
tures). This memory arrangemern is dictated by the fact that GPUs support only
two-dimensional output bu®ers. As sud, the PDE computation is performed on a
slice-by-slice basis. Memory usageis slightly optimized by pading the scalar slicesinto
the RGB channelsof the RGBA pbu®ers.In addition to saving texture memory, this also

reducesthe number of costly render target swaps by a factor of three.

B.1.1 Computation Overview
The three-dimensional solver requires sewen render passesper slab to compute the
mean curvature, and a total of 16 render passesper slab to compute an ertire time step
update. For a 256x256x175 data set, this meansthat 2800render passesare required to
update the ertire volume a single PDE time step. Pseudaode for the solver is shovn
below, using function-call-lik e syntax to represent render passes.The partitioning of the
computation into render passesis dictated by the number of available texture inputs,

temporary registers, and fragmert program instructions.

for(int  t=0; t < numSteps; t++) {

for(int  z=0; z < numSlabs; z++) {
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/[ Computetwo sets of 4-vec derivatives
Tex2D d1 = derivl( phi[z] ); N1
Tex2D d2 = deriv2( phi[mz], phi[pz] ); In 2

/[ Compute Curvature

Tex2Dd3 = deriv3( phiimz], phi[z], phi[pz] ); I3
Tex2Dd4 = derivd( phiimz], phi[z], phi[pz] ); I 4
Tex2D d5 = deriv5( phi[mz], phi[z], phipz] ); Il 5
Tex2D d6 = deriv6( phi[mz], phi[z], phipz] ); Il 6
Tex2D cx = curvX( dl, d3, d4, normalizeLUT ); /Il 7
Tex2Dcxy = curvY( dl, d3, d5, cx, normlalizeLUT ); // 8
Tex2Dcurv = curvZ( di1, d2, d6, cxy, normalizeLUT ); // 9
/I Sumthe speed functions

Tex2D speed = sumSpeed(curv, G); /[ 10
/[ Upwind Computation

Tex2D minG1l = minGradl( d1, d2 ); /I 11
Tex2D minG2 = minGrad2( minG1, d1, d2 ); /I 12
Tex2D maxG = maxGrad(dl, d2 ); /I 13
Tex2D gMagl= gradMagl( minG2, maxG, speed, Il 14

phi[z], [2NormLUT);

Tex2D gMag2= gradMag2( gMag1l); /I 15
/[ Do PDEtimestep update

Tex2D phi[z] = phiUp( gMag2, multScaleLUT ); /I 16

}
}

As discussedin Chapter 3, this full-volume solver is only one to two times faster
than a sparse- eld CPU-basedimplementation [52]. The GPU-based solver, however, is

performing approximately 10 times more computations.



APPENDIX C

GPU MEMOR Y ALLOCA TION REQUEST
GENERA TION

C.1 Intro duction
This appendix describes the details of the GPU memory allocation/deallo cation re-
quest schemeusedby the GPU virtual memory system. The algorithm is described rst
in terms of an abstract client solver. Section C.1.2 preseris the client-speci ¢ details in

terms of the level-set solver client.

C.1.1 General Allo cation Request Algorithm

The allocation requestalgorithm consistsof the following steps:

A GPU computesVPN of requestedactive pages
B GPU compressesctive-pagerequest
C CPU readscompressedrequestimage
D CPU decalesactive-pagerequest
a Issuesmemory allocation/deallo cation requests
b Updates pagetables and geometry engine
c Calls client's ReleasePagefunction
d Calls client's InitNewPage function

StepsA and B create the set of requestedactive virtual pages. This set sernesasthe
memory allocation/deallo cation request to the CPU. The CPU then calls the client's
ReleasePage function for ead newly deallocated page before deallocating the page.
Similarly, the CPU calls the client's InitNewPage function for eat newly activated page.

In Step A, the GPU usesclient-speci ¢ data to create two auxiliary RGBA (i.e. 4-
tuple) bu®ersthat hold eight true or false (e.g., 255 or 0) values for ead active data
elemen (Figure 3.6). The rst six valuesrepresernn whether or not the virtual pagein
ead of the six cardinal directions should be active for the next pass. The sewenth value
indicates if the active pageitself should be active, and the eighth value is free to be used

by the client. The level-set solver client usesthe eighth value to determine if a newly
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deactivated memory pageis inside or outside the level-setsurface. This eight-dimensional,
active-pageinformation vector, J, isthusJ = (+X ;i X;+y ;i y;+Z; z self, clientSpeci c),
where the rst six elemeris refer to relative neighbor o®setsin the virtual page space,
Vp.

The eight-value code, J, is computed in eight substream passesfollowed by a sin-
gle standard (i.e., erntire memory page) pass. The substream passescompute whether
the in-plane adjacert memory pagesneedsto be active (i.e., the edge-adjaceh pages
(+x;i x;+y;i y)). Each substreampasscomputesthe value of a client-speci ed function,
IsNeighborActive , acrossthe pageboundary orthogonal to the pageedgebeing rendered
and writes the boolean result to the corresponding output componert of J. The second
computation calls IsNeighborActive for the pagesabove and below the active one.
Note, howewer, that becausethe neighboring pagesare face-adjaent, this computation is
performed at all data elemens in the pageinstead of just the edges. The computation
also writes a true value to the J componert represerning the active page itself if the
client's IsSelfActive  function returns true. The value of the eighth bit is Tled by the
result of the client's IsEighthBitTrue function.

Step B of the allocation-request algorithm is to compressthe two, J bu®ersinto
a small (- 64kB) active-pagemessage.This compressedmessageseres as the memory
allocation/deallo cation requestthat is sert to the CPU. The compressionis accomplished
by rendering a quadrilateral of size S[Gp] with the automatic mipmapping option enabled
on the neighbor-information bu®ers. The render pass also usesa fragmernt program
designedto create a bit code at ead pixel value. Each pixel in the resulting small image
corresponds to a physical memory page. The value of ead pixel cortains an eight-bit
code of the sameform asthe eight-value code producedin step A (i.e., the J vector). This
eight-bit code completely determinesif the memory page and/or any of its six cardinal
neighbors in virtual pagespaceare to be active on the next pass.

The automatic mipmapping performs a box- Iter averaging of the values written in
Step A. The result is that if any data elemen in the memory page set a value to true
(i.e., 255) in Step A, the down-sampled value will also be true (i.e., nonzero). The
fragment program inspects these down-sampled values. It setsthe corresponding bit in
the output value to true for ead nonzeroinput. The bits are setvia an emulated bitwise
OR operation. Current fragmen processorsdo not support bitwise operations, but an

OR is emulated by conditionally adding power-of-two valuesto the output value.
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In Step C, the CPU readsthe bit-code messagdrom the GPU. Step D beginsby the
CPU wrapping the messagebu®er with a bit-v ector accessor. The resulting bit vector
is a linear represetiation of the physical page space,Gp, where ead byte represernts the
information for a page. Two auxiliary bit-v ectors are allocated|eac h a bit-addressed,
linear represenation of the virtual memory pagespace,Vp. The rst isthe newActiveSet
bit vector, and the secondis the client-speci ¢ eighthBitSet bit vector. After the
allocation messageis decaded, a true bit in the newActiveSet bit vector will denote
an active virtual page.

The CPU then decalesthe bit-v ector message.For ead 8-bit sequencethe current
linear index is converted to a physical page number (PPN). The inversepagetable then
converts the PPN to a VPN. Becauseead bit in the bit-code messagerepresens an
o®setdirection from the current virtual page, the decaler can easily reconstruct the
VPN for ead neighbor of ead active page. The decaler then reads the sewen spatial
pagebits. It then computesthe VPN for the pagerepresetted by ead true bit and sets
the corresponding bit in the newActiveSet bit vector to true. If the eighth bit is true,
the eighthBitSet is setto true for the corresponding virtual page.

The virtual memory systemnext determineswhich virtual memory pagesto deallocate
and which to allocate. The set of newly deactivated pagesis constructed by performing
a set-subtraction of the newActiveSet from the oldActiveSet . The set of pagesthat
needto be allocated for the next passis created by computing the opposite set di®erence.
Each deallocated memory pageis pushedonto a stadk of free memory pages. The page
table are updated basedon the client's implementation of ReleasePage function. Each
newly activated pageis mapped to a physical memory location by popping a page from
the free page stadk. The physical pageis mapped in the pagetables and the geometry
engine is appropriately updated. The new physical memory is then initialized via the

client's InitNewPage implementation.

C.1.2 Level-Set Solver Implemen tation Details
For Step A of the update algorithm described in sectionC.1.1, the level-setsolver de-
“nes the functions IsNeighborActive and IsSelfActive . The IsNeighborActive reads
the previously computed, one-sidederivative that crossesa pageboundary onto a speci ¢
neighbor. The function returns true if the derivative is nonzero. The IsSelfActive

function returns true if any of the six, cardinal, one-sidedderivatives are nonzero. The
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level-set solver simply writes the value of the level-set embedding to the eighth data
value. This is usedto determine if a newly deactivated pageis inside or outside of the
level-setsurface. The IsEigthBitTrue function usedby the fragmen program in Step B
returns true if the eighth data value is greater than zero. If a page becomesinactive, it
is guaranteed to be either all black or all white. The down-sampledlevel-setembedding
for the pagewill thus be either pure black or pure white.

The eighthBitSet usedin the bit-code messagedecading stage (Step D) is usedto
determine if a newly deactivated memory pageis inside or outside the level-set surface.
If the bit for the pageis true, then the pageis inside the surface. Otherwise it is outside.
This information is usedby the solver's ReleasePagefunction to map deactivated pages
to the correct static physical page (white or black). These static mappings ensurethat
derivativesacrossboundaries of the active domain are correct.

The solver's InitNewPage function initializes newly allocated physical memory. The
memory is initialized to either white or black depending on the inside/outside setting
in the page table entry. Note that no level-set data are transferred to accomplish the
update. The ertire level-set solution residesonly on the GPU for the duration of the
computation. The current implementation alsohasto sendpre-computed speedpagesto
the GPU when new pagesare added. This could be optimized for many speedfunctions,

however, by computing the function on the GPU.



APPENDIX D
SOFTW ARE DESIGN

D.1 Intro duction
This appendix describesthe software infrastructure on which the GPU-basedlevel-set
solver and visualization systemis built. The rst sectiongivesan overview of the layered
structure of the code. The proceedingsectionsgive detailed documentation for ead of

theselayers.

D.2 Design Overview

The GPU-basedlevel-set solver and visualization systemare built using v e separate
software layers. Figure D.1 shavsthese v elayersand the libraries within ead layer. The
lowest layer includes low-level data structures and the OpenGL interface for cortrolling
the GPU. The secondlayer provides object-oriented abstractions for GPU-speci ¢ oper-
ations, while the third layer encapsulatesthe operations necessaryto execute an ertire
render pass. The fourth layer includesthe level-setsolver code and visualization modules
described in Chapter 3. Lastly the fth layer encompasseshe volume segmemation
application described in Chapter 4.

The rst layeris comprisedof three software libraries: The OpenGL three-dimensional
graphics API [43],a utilit y library called Gutz, and an OpenGL manageme utilit y called
Glew [17]. The OpenGL routines issuecommandsto the GPU and passdata between
the CPU and GPU. The Gutz library contains core utilities sud as vectors, arrays, and
matrices. Milan Ikits' Glew library greatly simpli es the handling of the various OpenGL
versionsand extensions.

The secondlayer is an object-oriented abstraction around OpenGL called Glift. Glift
usesOpenGL and Gutz to provide a framework for writing modular, re-usableOpenGL
code.

The third layer, CompGPU, usesGlift objects to abstract a GPU render passas a

function-object (functor). CompGPU enablesprogrammersto write render passes
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Segmentation Application

SolverRLS | SpeedRLS | Visualization

CompGPU

Glift

Gutz OpenGL Glew

Figure D.1. The v esoftware layerswith which the level-setsegmetation application is
built. In the rst layer, OpenGL is usedto cortrol the GPU, Gutz de nes vector, matrix,
and array data structures, and Glew handlesOpenGL extensions. The secondlayer, Glift,
combines OpenGL calls into reusable object-oriented OpenGL modules. CompGPU is
the third layer and encapsulatesan ertire render passas a forEach function call. The
level-set solver, level-set speed functions and visualization modules are de ned in the
fourth layer, and the volume segmetmation application comprisesthe fth layer.
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using function-call-lik e syntax. The fourth software layer contains the level-set solver
and visualization modules. Both of theselibraries make extensive useof Gutz, Glift, and
CompGPU objects. The solver and visualization objects communicate with ead other
via se\eral prede ned interfaces.

The fth and nal layeristhe interactivelevel-setsegmemation application. This layer
createsan instance of the level-setsolver and con gures it for volume segmetation. The
segmetation application also instantiates the visualization modules. The application
speci es the graphical user interface (GUI) using Glut [20] and Glui [39]. Note that
the fourth and fth layers make extensive use of Gordon Kindlmann's Nrrd library [21]
for raster data manipulation. This includes Te I/O, data resampling, resizing, slicing,

cropping, tiling, etc.

D.3 The First Layer
D.3.1 OpenGL
The system usesthe OpenGL graphics API to cortrol the graphics processor. The
details of the APl are described in other sources[43] and will not be repeated here.
OpenGL calls set the state of the graphics board and display drivers. This low-level of
programming is error-prone and leadsto non-reusablecode. This is the motivation for

the Glift abstraction layer.

D.3.2 Glew

The Glew library [17] (OpenGL Extension Wrangler) greatly simpli es the many
versionsof OpenGL and the large number of OpenGL extensions. It also uni es the use
of all OpenGL featuresacrossmultiple computational platforms. Glew wascreatedand is
maintained by Milan Ikits and will not be discussedin detail in this thesis. In brief sum-
mary, using Glew entails simply replacing all OpenGL-related headerincludes (including
vendor-speci ¢ extensions)with glew.h and wglew.h. The function glewlnit() is then
called oncein the application to initialize all OpenGL API calls (including all extensions).
Glew can then be queried at run-time to determine the availability of speci ¢ OpenGL

features.

D.3.3 Gutz
The Gutz library corntains ubiquitous primitiv es for graphics-related programming

such as vectors, matrices, and arrays. This library is a combination of code written by
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Joe Kniss, Milan Ikits, and myself. All of the Gutz classesare template-based,lightweight
abstractions on top of raw data. The classesare carefully designedto have a run-time
represemation that consistsonly of the desired data (i.e., no virtual function pointers,
etc.). The result is that complex data structures can be created (e.g., multidimensional
arrays of vectors) that have a C-like, corntiguous underlying memory represettation. This
represettation is critical for both performanceand interfacing with low-level API's suc
as OpenGL that require corntiguously allocated data.

The vector classesonsistof templated classedor 1D to 4D vectors, while the matrices
consist of templated classesfor 2£ 2 to 4 £ 4 matrices. Pre-de ned typedefsexist for
many of the common instantiations of theseobjects. The typdefsare namedin a similar
fashionto OpenGL type speci cations. For example, a three-vector of °oats is a vec3f,
a4 £ 4 matrix of integersis a mat4i.

The array classesaretemplated by elemen type and separateclassesxist for 1D to 5D
arrays. There aretwo typesof arrays: arrayOwnand arrayWrap. Thesedi®erby memory
ownership policy. Creating an arrayOwn object allocatesmemory for the array. Likewise,
deleting an arrayOwn frees the memory. In cortrast, an arrayWrap object does not
allocate or freethe underlying memory. The purposeof the arrayWrap classess to provide
conveniert multidimensional accessoraround raw data. They alsoallow the programmer
to \cast" array data to di®erent dimensionalities. This design is again motivated by
the requiremert to communicate blocks of data to/from low-level APIs. Note that the
arrayWrap classfor ead dimension of array is a subclassof the corresponding arrayOwn
As sudh, arrayWrap objects can be passedas function argumerts where the parameter
speci cation is an arrayOwn. Also note that an arrayBase classexiststhat is dimension-

agnostic and can thus be usedto passarbitrary dimensionedarrays.

D.4 The Second Layer: Glift
The secondlayer is an object-oriented abstraction around OpenGL called Glift. Glift
usesOpenGL, Gutz, and Glew to provide a framework for writing modular, re-usable
OpenGL code. Unlike other object-oriented OpenGL encapsulationssuch as GLT[49]
and Openlnventor[45], the Glift framework is designedfor low-level OpenGL dewelopers
rather than high-level graphics programmers. Glift's object structure is designedonly to
enforcesemartically correct OpenGL programming but avoid making assumptionsabout

how OpenGL will be used. Glift also doesnot encapsulateany windowing-related calls
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other than the handling of pbu®ers. It is expected that a windowing utilit y such as
Glut [20] will be used.

The Glift framework de nes a set of reusable and extensible modules that can be
composited into higher-level objects. The multi-lev el approad is very °exible in that
a programmer can chooseto work at various levels within the same application. The
possible coding levels include raw OpenGL, basic Glift objects, and various levels of
composited Glift objects. These composite Glift objects may be as simple as a multi-
texture object or as complex as an ertire render pass. Another goal of the library is to
isolate all GPU-vendor-speci ¢ OpenGL code into pluggable modulesto facilitate writing
applications that support multiple GPU architectures. A classtree of Glift is shavn in
“gure D.2.

The Glift design supports two types of OpenGL calls: those that set/unset GPU
pipeline state (the StateGLI tree) and those that initiate processingof data through
the pipeline (the DrawableGLI and RenderableGLI trees). A third type of call, pipeline
status queries, are not currently supported but could be added later. All OpenGL calls
that set/unset state are encapsulatedby the classtree based on the StateGLI inter-
face. This interface speci es a bind() and release() public virtual method. OpenGL
calls that move data through the pipeline are encapsulatedby the classtree basedon
the DrawableGLI interface. DrawableGLI simply speci es a public draw() method. A
third classtree basedon the RenderableGLI interface combines all the StateGLI and
DrawableGLI objects that specify an ertire render pass.

In addition, all Glift objects support a compile() method that attempts to compile
the OpenGL commands encapsulatedby the object into a display list. Note that this
feature provides a way to \compile away" the abstraction penalty that might otherwise be
causedby the extensive useof virtual functions. In practice, however, the GPU consumes
most of the execution time in many Glift applications and so the abstraction layers do
not a®ectthe execution speed. The Glift compile() feature is currently only partially
implemented. It is supported throughout the framework, but only works correctly when
all of the reachable OpenGL calls can legally be compiled into display lists. Future work
will add the correct handling of OpenGL calls that cannot be compiled (e.g., wgl calls,
vertex array pointer calls, etc.).

Glift is designedto provide a minimal amount of preencapsulatedOpenGL state and

have obvious extensionpoints for adding more functionalit y asdesired. As Glift matures,
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more functionality will come prede ned by the library. The following is a list of current

extension points:

ClassName Purpose
GenState De ning any bind/release state that is not already de ned.
PixelShader De ning interfacesto hardware-speci ¢ fragmen shaders

VertexShader De ning interfacesto hardware-speci ¢ vertex shaders
WrappedPrim  De ning high-level drawables containing a single
PrimGL object

MultiPrim De ning high-level drawables cortaining multiple
PrimGL objects

RenderPass De ning a render passwith functionality di®erert than
has been provided

DrawAlgorithm  De ning a drawing algorithm other than the standard
(glBegin(:::)/glEnd( :::) or vertex array method
TexCoordGen  De ning texture coordinate generation algorithms

To begin compositing a render pass, the StateGLI objects are rst composited into
a Shader object. The Shader thus contains the speci cation of the textures and any
other OpenGL pipeline state required by the pass. The DrawableGLI objects are then
de ned and put into a MultiPrim object. The Shader object and the Multiprim (or
any other RawPrin) are combined into a ShadedPrimobject. This ShadedPrimobject (or
any Drawable) is combined optionally with a texture and/or pbu®er destination into a
RenderPass

The useof the texture objects (the Texture classtree) require someadditional expla-
nation. To create a texture object, the user rst createsan instance of MultiTexOState
to specify the texture object state. If texture data is to be downloaded to the texture
object, the user also creates an appropriate TexData object. The constructor of the
desiredtexture object then takesa pointer to the MultiTexOState object and optionally
the TexData object. In addition, the texture constructors also acceptan optional pointer
to a pbu®erobject (PbuffGlift ).

Glift is by no meansa completedproject. The rst issueis to completethe compile()
implementation to support non-compilable APl calls. The secondfuture project is to
add a PrimWrap object to the DrawableGLI tree that does not own its vertex and
attribute data. It instead should only hold pointers to the application-owned data.
This is important for adoption of Glift into existing applications. It may be possible
to implement this by adding C++ template policies [2] to the current objects. The third

future-work issueis adding smart-pointers (i.e., referencecourting pointers) throughout
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Glift for automatic memory managemen The last, and most ambitious, future direction
for Glift is to rework the core objects sud that Glift can interchangeablyuseMicrosoft's
DirectX or OpenGL asan underlying APIl. An important goal for Glift designis that the
framework have a clearly de ned layer that remains below that of a scenegraph (i.e., a
scenegraph could be built using Glift objects). It may be advantageousto remove the
Glift objects that are above this abstraction level in order to facilitate its adoption.

In addition to its usein the level-setsolver described in this thesis, Glift is now being
used by Joe Kniss in his Simian volume renderer[22]. An early version of Glift was also
usedto build the front-end of the real-time ray tracing demo, Star-Ray, shown at the SGI
Siggraph 2002 exhibition booth [46].

D.5 The Third Layer: CompGPU

The third software layer, CompGPU, usesGlift objectsto abstract a GPU render pass
as a function-object (functor). The function-call abstracted by CompGPU is essetially
a forEach loop over data stored in texture memory. The speci cation of which data
elemeris to include in the computation is speci ed by the rasterization of two-dimensional
geometry The computation performed on ead elemen is speci ed by the vertex and
fragment programs, and the results of the forEach call are written to the speci ed output
bu®er(s). While the level-set solver was successfullybuilt using CompGPU objects, the
design has proven to be cumbersomeand problematic. This software layer should be
re-designedbefore future projects adopt it. As sud, this section describes both the
successesand failures of the design.

The CompGPU layer consists of only a single class, ComputeSlab All clients of
CompGPU subclassComputeSlabto create a speci ¢ render pass. The computation (i.e.,
render pass)is initiated by calling the compute() virtual function with the appropriate
parameters.

The design decision to use ComputeSlab as a base classis a sewere problem with
CompGPU. Although the design does maximize code reuse, the fact that ead com-
putation must be a separate class de nition leads to an explosion in code size. A
policy-basedCompGPU layer appearsto be a much better solution. Mark Harris's SlabOp
class[15] is a much better starting point than CompGPU. SlabOp, however, is missing a
function-call-lik e syntax. This last featuresis dizcult to support in a generalfashion, yet

is an important abstraction for writing general-purpose GPU computation applications.



68

One of the largest challengesis the speci cation of argumerts to the compute() func-
tion. In practice, many of the input argumens (textures, fragmert programs, geometry,
etc.) remain constart ead time a computation is performed. There are instances,
however, when some of these argumerts do change. An argumert cacing medanism
is thus neededso that the programmer can dynamically selectwhich parametersneedto
be updated.

The current medhanism for handling argumerts is to passstatic argumerts via the
subclassconstructor, and passdynamic argumerts to the compute() function. This is an
e®ectie solution, but leadsto a large number of compute() versionsin the baseclass.
A policy-basedimplementation may be the solution to thisjwhere the interface of the
compute() call is de ned by a policy. Note that Mark Harris's SlabOp handles this
problem by requiring the programmerto setthe state of the SlabOp object before calling
the analogueof compute() with no argumerts. The problem with this approad is that
it leadsto ditcult-to-read code that doesnot have the appearanceof function (forEach)
calls. Implementing a C++ function call on top of ead SlabOp call may be a reasonable

solution.

D.6 The Fourth Layer
The fourth software layer contains the level-setsolver and visualization modules. Both
of these libraries make extensive use of Gutz, Glift, and CompGPU objects. The solver

and visualization objects communicate with ead other via seeral prede ned interfaces.

D.6.1 Level-Set Solver

The GPU-based level-set solver uses CompGPU, Glift, and Gutz objects to build
a °exible solver framework. This framework includes the full speci cation of various
level-set solvers and the speedfunction modules usedby the solvers. The current design
also includes two-dimensional visualization tools, but these should be removed|just as
the volume rendering module is ertirely separatefrom the solver. Although the design
includes level-set-speci ¢ functionality, the framework lays the groundwork for a more
general solver infrastructure in the future. Much of the infrastructure described herein
could and should be handled by a compiler. The designof this framework, however, does
outline a set of required featuresfor future streaming languages/APIs for generalpurpose

GPU computation.
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The core solver classis SolverRLS. The speci ¢ solvers are subclassesof SolverRLS.
The various solversinclude versionsfor di®erent GPU architectures, separatetwo-dimensional
and three-dimensionalversions,and sparseand densecomputation versions. In addition,
a parallel classtree, SpeedRLSspeci es the speed function modules. The solvers take
SpeedRLS®bjects as constructor inputs.

The SolverRLS classtree is an exampleof the Strategy object-oriented designpattern.
The base class provides the functionality that is common to all solvers and speci es
abstract interfaces for functionality that is required, but speci ¢ to the speci ¢ solvers
(implemented as subclasses). SolverRLS provides memory managemenm services, user
interface (Ul) hooks, aswell as speedfunction managemem

The solver subclassesown their speci ¢ computation. They create the CompGPU
objects for ead pass, specify the order of the passes,and integrate the speed function
modules into the computation. Each subclass reports the number of live temporary
bu®ersat eath program point (where ead program point speci es a render pass)to the
baseclass. The baseclassthen usesthis information to allocate an appropriate number of
temporary pbu®ers/textures and perform register allocation to resolwe con®icts between
the bu®ers. The subclassthen receives a set of pbu®er/texture pointers to usefor eah
program point that minimizes memory usageand guaranteesthat no data con®icts will
occur.

The solver infrastructure is designedto allow for fully modular speed functions that
can be arbitrarily addedto appropriate solverswithout having to changethe solver. The
solvers interact with the speedfunctions by informing the baseclassof DataPacks that
are available and for which program points these DataPacks are valid. A DataPack s a
set of level-set-speci ¢ temporary valuesthat are currently held in texture memory. The
elemens of a DataPack are called SolverSID s (solver service IDs). These DataPacks
are used by the baseclassto schedule the execution of speedfunction modulesinto the
computation.

The speedfunction modules encapsulatean entire level-set speed function computa-
tion. They are implemented as subclassesof SpeedRLSThe computation of the speed
function may include zero to many render passes. Just like the solver modules, the
speed function module owns its own CompGPU objects and speci es the order of the
computation. The speed functions receiwe input data from the solver by subscribing to

DataPacks provided by the solver. Speed function modules also report the number of
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temporary bu®ersrequired for the speed computation. The SolverRLS class analyzes
the DataPack and temporary bu®er requeststo sdedule the execution of the speed
module and allocate pbu®ersand textures appropriately. As mentioned above, much
of this functionality would be much more concisely expressedin language form|either
speci cally for level-sets or for general streaming GPU computation. The Brook [5]
streaming languageis a start in this direction.

The naming sthemefor the solvers requires someadditional explanation. The names
of the subclassesll beginwith SolverRLS_. The next three charactersdescribe attributes
of the solver. The rst character is either D or S and denotesif the solver usersa dense
(i.e., full) or sparsememory represetation, respectively. The secondcharacter is also
either D or S and denotesif the solver usesdenseor sparsecomputation, irrespective of
the memory represenation. The last character represerts the dimensionality of the solver
and is thus either 2 or 3. The last part of the solver name denotesthe GPU architecture
for which the solver is designed. Currently the two options are A8 and A9, which stand
for ATI Radeon 8500 and ATl Radeon 9x00 GPUs, respectively. Note that the A9
classi cation is for GPUs with a model number of 96000r higher. As sudh, the streaming

narrow-band solver described throughout the thesis is named SolverRLS_SS3A9

D.6.2 Visualization Mo dules

The three-dimensionalvolume rendering module described in this thesisis an ertirely
separatelibrary. The majority of this code was written by Joe Kniss and leverageshis
Simian [22] volume rendering library. The level-set-soler-speci ¢ code is in a module
called IsetRen . This is not implemented as a class, but should be. It speci es an
initialization call (essetially a constructor), a function to set the level-set input data
texture, and a function usedto update the virtual-to-ph ysical pagetable mapping. This
update function is called by the SolverRLS_SS3A9 module when a visualization update
is requested. The module also speci es hooks for the three-dimensional user-interface
features (three-dimensional manipulations, clipping plane operations, etc.).

The two-dimensionalvisualization modulesare currently owned by the solver modules.
They should, however, be ertirely separateand communicate with the solvers similar to

the communication schemeusedby the volume renderer.
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D.7 The Fifth Layer:
Level-Set Segmentation Application

The fth and nal layer is the interactive level-set segmetation application. This
layer createsan instance of the level-setsolver and con gures it for volume segmetation
by creating appropriate speedfunctions. The segmemation application also instantiates
the volume visualization module. This software level has received the least amount of
developmert time and e®ort of the ertire application and should be viewed asa minimal
implementation with much room for improvemert.

The application speci esthe graphical userinterface (GUI) using Glut [20]and Glui [39].
All Te i/o and raster-data manipulation is performed using Gordon Kindlmann's nrrd

library [21]. The main routine for the application is cortained in the Te, \base.cpp.”



REFERENCES

[1] Ad alsteinson, D., and Sethian, J. A. A fast level set method for propagating
interfaces. Journal of Computational Physics (1995), 269{277.

[2] Alexandrescu, A. Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley,2001.

[3] Beers, A. C., Agrawala, M., and Chaddha, N. Rendering from compressed
textures. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques(1996), ACM Press,pp. 373{378.

[4] Bolz, J., Farmer, I., Grinspun, E., and Schr éder, P. Sparsematrix solvers
on the GPU: Conjugate gradients and multigrid. In ACM Transactionson Graphics
(July 2003),vol. 22, pp. 917{924. (Proceedingsof ACM Siggraph 2003).

[5] Buck, I., Foley, T., Horn, D., Sugerman, J., Hanrahan, P., Houston, M.,
and Fatahalian, K. BrookGPU. http://graphics.stanford.edu/projects/
brookgpu/ , 2004.

[6] Cabral, B., Cam, N., and Foran, J. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In ACM Symmsium
On Volume Visualization (1994).

[7] Cates, J., Lef ohn, A. E., and Whit aker, R. GIST: An interactive, GPU-based
level-set segmemation tool for 3D medical images. Under review at Medical Image
Analysis.

[8] Cates, J., Whit aker, R., and Jones, G. Case study: An evaluation of
user-assistedhierarchical watershed segmemation. Under review at Medical Image
Analysis, 2004.

[9] Cebenoyan, C., and Wiloka, M. Optimizing the graphics pipeline. Game
Developer's Conference2003, http://developer.nvidia.com/ , 2003.

[10] Drebin, R. A., Carpenter, L., and Hanrahan, P. Volumerendering. In ACM
Computer Graphics (SIGGRAPH '88 Proceedings) (August 1988), pp. 65{74.

[11] Dr oske, M., Meyer, B., Rumpf, M., and Schaller, C. An adaptive level
set method for medical image segmemation. In Proc. of the Annual Sympmsium on
Information Processingin Medical Imaging (2001), R. Leahy and M. Insana, Eds.,
Springer, Lecture Notes Computer Science.

[12] Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. A non-oscillatory
Eulerian approac to interfaces in multimaterial °ows (the ghost °uid method).
Journal of Computational Physics 152 (1999), 457{492.



73

[13] Goodnight, N., Woolley, C., Lewin, G., Luebke, D., and Humphreys,
G. A multigrid solver for boundary value problems using programmable graphics
hardware. In Graphics Hardware 2003 (July 2003), pp. 102{111.

[14] Grayson, M. A short note on the ewlution of surfacesvia mean curvatures.
Journal of Di®erential Geometry 58 (1989), 555.

[15] Harris, M., and Lef ohn, A. E. Slabop researt noteblog. http://www.cs.unc.
edu/~harrism/noteblog/archive/2003_01_ 26 _archive.html% , 2003.

[16] Hillis, W. D. The Connection Machine. MIT Press,1985.

[17] Ikits, M. Glew, the OpenGL Extension Wrangler. http://glew.sourceforge.
net, 2002.

[18] Kapasi, U., Dall y, W. J., Rixner, S., P. R. Mattson, J. D. O., and
Khailany, B. Ezcient conditional operations for data-parallel architectures.
In Proceadings of the 33rd Annual International Symmpsium on Micr oarchitecture
(2000), pp. 159{170.

[19] Kaus, M., Warfield, S. K., Nabavi, A., Bla ck, P. M., Jolesz, F. A., and
Kikinis, R. Automated segmemation of MRI of brain tumors. Radiology 218
(2001), 586{591.

[20] Kilgard, M.  Glut, the OpenGL utility toolkit. http://www.opengl.org/
developers/documentation/glut/index.html , 1997.

[21] Kindlmann, G. Teem. http://teem.sourceforge.net , 2003.

[22] Kniss, J., Kindimann, G., and Hansen, C. Multi-dimensional transfer functions
for interactive volumerendering. IEEE Transactionson Visualization and Computer
Graphics 8, 3 (July-September 2002), 270{285.

[23] Kniss, J., Premoze, S., Hansen, C., Shirley, P., and McPherson, A. A
model for volume lighting and modeling. IEEE Transactions on Visualization and
Computer Graphics 9 (April-June 2003), 150{162.

[24] Kra us, M., and Ertl, T. Adaptive texture maps. In Graphics Hardware 2002
(Sept. 2002), pp. 7{16.

[25] Kr dger, J., and Westermann, R. Linear algebra operators for GPU imple-
mentation of numerical algorithms. In ACM Transactions on Graphics (July 2003),
vol. 22, pp. 908{916. (Proceedingsof ACM SIGGRAPH 2003).

[26] Larsen, E. S., and McAllister, D. Fast matrix multiplies using graphics
hardware. In Super Computing 2001 (Nov. 2001), ACM SIGARCH/IEEE.

[27] Lef ohn, A. E., Cates, J., and Whit aker, R. Interactive, GPU-based level
sets for 3D segmemation. In Medical Image Computing and Computer Assistal
Intervention (2003), pp. 564{572.

[28] Lef ohn, A. E., Kniss, J., Hansen, C., and Whit aker, R. Interactive defor-
mation and visualization of level set surfacesusing graphics hardware. In IEEE
Visualization (October 2003), pp. 497{504.



74

[29] Lef ohn, A. E., Kniss, J., Hansen, C., and Whit aker, R. A streaming
narrow-band algorithm: Interactive deformation and visualization of level sets. IEEE
Transactions on Visualization and Computer Graphics (2004), To Appear.

[30] Lef ohn, A. E., and Whit aker, R. A GPU-based, three-dimensional level set
solver with curvature °ow. University of Utah technical report UUCS-02-017,
Decenber 2002.

[31] Levoy, M. Display of surfacesfrom volume data. IEEE Computer Graphics &
Applications 8, 5 (1988), 29{37.

[32] Malladi, R., Sethian, J. A., and Vemuri, B. C. Shape modeling with front
propagation: A level set approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence 17, 2 (1995), 158{175.

[33] Micr osoft Corpora tion . Direct3D. http://www.microsoft.com/directx ,
2002.

[34] Osher, S., and Sethian, J. Fronts propagating with curvature-dependen speed:
Algorithms based on Hamilton-Jacobi formulations. Journal of Computational
Physics 79 (1988), 12{49.

[35] Owens, J. D. Computer Graphicson a Stream Architecture. PhD thesis, Stanford
University, Nov. 2002.

[36] Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M. A PDE-based
fast local level set method. J. Comput. Phys. 155 (1999), 410{438.

[37] Percy, J., and Mace, R. OpenGL extensions: Siggraph 2003. http://mirror.
ati.com/developer/techpapers.html , 2003.

[38] Pur cell, T. J., Buck, 1., Mark, W. R., and Hanrahan, P. Ray tracing on
programmablegraphicshardware. ACM Transactionson Graphics21, 3 (July 2002),
703{712. ISSN 0730-0301(Proceedingsof ACM SIGGRAPH 2002).

[39] Rademacher, P. Glui, the OpenGL user interface library. http://www.cs.unc.
edu/~rademach/glui/ , 1999.

[40] Rumpf, M., and Strzodka, R. Level set segmemation in graphics hardware. In
International Conferenae on Image Processing (2001), pp. 1103{1106.

[41] Russell, R. M. The cray-1 processorsystem. Communications of the ACM 21, 1
(1978), 63{72.

[42] Sabella, P. A rendering algorithm for visualizing 3D scalar elds. In ACM
Computer Graphics (SIGGRAPH '88 Proceedings) (August 1988), pp. 51{58.

[43] Segal, M., and Akeley, K. The OpenGL graphics system: A speci cation
(version 1.4). http://www.opengl.org , 2003.

[44] Sethian, J. A. Level Set Methads and Fast Marching Methods Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials
Scien®. Cambridge University Press,1999.



75

[45] SGI. Openinvertor. http://oss.sgi.com/projects/inventor/ , 2003.

[46] SGI, and Scientific Computing and Imaging Institute at the University
of Ut ah. Star-ray interactive ray tracer demoat Siggraph 2002. http://www.sci.
utah.edu/stories/2002/sum_star- ray.html , 2002.

[47] Sherbond y, A., Houston, M., and Nepal, S. Fast volume segmetation
with simultaneous visualization using programmable graphics hardware. In IEEE
Visualization (October 2003), pp. 171{196.

[48] Silberscha tz, A., and Gal vin, P. Operating SystemConcepts Addison-Wesley
1998.

[49] Stew art, N. GIt OpenGL C++ Toolkit. http://www.nigels.com/glt/ , 2002.

[50] Strzodka, R., and Rumpf, M. Using graphics cards for quantized FEM com-
putations. In Proceedings VIIP Conference on Visualization and Image Processing
(2001).

[51] Taiwan, E. Powerstrip. http://www.entechtaiwan.net/ps.htm
[52] The Insight Toolkit . http://www.itk.org , 2003.

[53] Udupa, J., LeBlanc, V., Schmidt, H., Imielinska, C., Saha, P., Grevera,
G., Zhuge, Y., Currie, L., Molhol t, P., and Jin, Y. A methodology for
evaluating image segmemation algorithms. In Proceedings of SPIE Vol. 4684 (2002),
SPIE, pp. 266{277.

[54] Warfield, S. K., Kaus, M., Jolesz, F. A., and Kikinis, R. Adaptive,template
moderated, spatially varying statistical classi cation. Medical Image Analysis 4, 1
(2000), 43{45.

[55] Warfield, S. K., Zou, K. H., and Wells, W. M. Validation of image segmen-
tation and expert quality with an expectation-maximization algorithm. In MICCAI
2002: Fifth International Conferenae on Medical Image Computing and Computer-
Assistal Intervention (Heidelberg, Germany, 2002), Springer-Verlag, pp. 298{306.

[56] Whit aker, R. T. Volumetric deformable models: Activ e blobs. In Visualization
In Biomedical Computing 1994 (Mayo Clinic, Rochester, Minnesota, 1994), R. A.
Robb, Ed., SPIE, pp. 122{134.

[57] Whit aker, R. T. A level-set approacth to 3D reconstruction from range data.
International Journal of Computer Vision 29, 3 (1998), 203{231.

[58] Xue, X., and Whit aker, R. Variable-conductance,level-set curvature for image
denoising. In IEEE International Conference on Image Processing (October 2001),
pp. 142{145.



