Interactive Protein Manipulation

Oliver Kreylos^a, Bernd Hamann^a, Nelson L. Max^a, Silvia N. Crivelli^b, and E. Wes Bethel^b

 $\label{eq:cs.ucdavis.edu} \\ \mbox{ \{kreylos,hamann,max\}@cs.ucdavis.edu; \{sncrivelli,ewbethel\}@lbl.gov.} \\$

Center for Image Processing and Integrated Computing,
 Department of Computer Science,
 University of California, Davis;
 b Lawrence Berkeley National Laboratory,
 Berkeley, California

Outline

- The problem
- Our approach
 - Creating structures "from scratch"
 - Manipulating structures
- Live demo

The Problem

Protein folding: The problem of translating

· · · GCCAATGATAACGGAGTGGACGGGGTA · · ·

into

Why We Want To Solve It

- The genotype—phenotype knowledge gap:
 - Gene defines chemical structure
 - Chemical structure defines 3D structure
 - 3D structure defines protein function
- Traditional techniques too slow and tedious
 - X-ray crystallography
 - NMR
- Quick and reliable structure prediction opens many research and application areas

Protein Folding by Optimization

Approach: Find global minimum of

Protein Folding by Optimization

Approach: Find global minimum of

- ⇒ Difficult global optimization problem
 - Many degrees of freedom
 - Many local minima

Global Optimization Algorithm

- Create set S of initial configurations
- Repeat until minimum found:
 - Pick configuration C from S
 - Modify C into C'
 - If E(C') < E(C), put C' into S
- Report best configuration(s) from S

Global Optimization Algorithm

- Create set S of initial configurations
- Repeat until minimum found:
 - Pick configuration C from S
 - Modify C into C'
 - If E(C') < E(C), put C' into S
- Report best configuration(s) from S

Problem: Creating good initial configurations

Creating Initial Configurations

Creating a 3D protein configuration from a gene takes three steps:

- 1. Decode gene
- 2. Predict secondary structures
- 3. Concatenate amino acid residues

Decode Gene

- Each triplet of base pairs (codon) in a gene encodes for one amino acid in a protein
- 64 possible codons encode for 20 amino acid types (and end-of-gene marker)
- Encoding is known

Predict Secondary Structures

- Three types of substructures:
 - α -helix
 - β -strand
 - Coil (loop, turn) region
- Methods of substructure type prediction:
 - Hidden Markov models
 - Neural networks

ANDNGVDGV HHHCCCEEE

- Assemble protein by concatenating amino acid residue templates
- Modify templates during assembly to create secondary structures

Purely geometric approach ⇒ fast

- Assemble protein by concatenating amino acid residue templates
- Modify templates during assembly to create secondary structures

Purely geometric approach ⇒ fast

Concatenate Amino Acid Residues

Concatenate Amino Acid Residues

Concatenate Amino Acid Residues

Creating Better Configurations

Problem: *Pre-configurations* are not good enough for subsequent global optimization

Creating Better Configurations

Problem: *Pre-configurations* are not good enough for subsequent global optimization

Solution: Use human intuition and interactive manipulation to create sets of better configurations

Manipulating Proteins

 Idea: Let user assemble proteins by dragging substructures

Manipulating Proteins

 Idea: Let user assemble proteins by dragging substructures

 Problem: When only a part of a protein is moved, bonds will break

Manipulating Proteins

 Idea: Let user assemble proteins by dragging substructures

- Problem: When only a part of a protein is moved, bonds will break
- Solution: Use inherent flexibility of protein to preserve chemical structure

Flexibility of Proteins

 Each single covalent bond along the amino acid chain can rotate around its bond axis

• Protein's overall shape is determined by vector of *dihedral angles* (ϕ_i) and (ψ_i)

Inverse Kinematics

 Use coil regions between selected structures as movement buffers

 Use Inverse Kinematics (IK) to translate structure movements into dihedral angle changes

Set of Initial Configurations

ProtoShop I

ProtoShop is a tool combining

- standard molecular visualization techniques,
- interactive manipulation (using IK),
- interaction-specific visual guides, and
- real-time visual feedback

to allow creating good initial configurations for subsequent protein folding.

ProtoShop II

ProtoShop...

- was used extensively during CASP5 competition
 - Created 20–30 configurations each for over a dozen large proteins
- has been released to research community: http://proteinshop.lbl.gov
- is being evaluated/used by several dozen research groups world-wide

Lessons Learned

- Protein folding needs human intuition
- ProtoShop offers direct method to translate intuition into 3D protein configurations
- More and better configurations can be created in less time
- Improved overall performance

Current and Future Work

- Better user interface for manipulation
 - 6-DOF input devices
 - Virtual reality environment
- Steering of global optimization process itself
 - Monitoring of configuration set
 - On-the-fly manipulation of configurations
 - Pruning of optimization tree
- Visualization of internal energy
- Integration of local energy optimization

Acknowledgments

- Collaborators:
 - University of California, Berkeley
 - University of Colorado, Boulder
 - Lawrence Berkeley National Laboratory
 - Center for Image Processing and Integrated Computing, University of California, Davis
- Funding agencies:
 - DOE, NSF, NPACI, NIH, NIMH, . . .