Remote GPU-Accelerated Online Pre-processing ofRaster Maps for Terrain Rendering

Rolf Westerteiger*, Fang Chen*, Andreas Gerndt*, Bernd Hamann†, Hans Hagen*.

* German Aerospace Center
Lilienthalplatz 7
38108 Braunschweig
Germany
firstname.lastname@dlr.de

† UC Davis
Shields Avenue 1
95616-8562, Davis, CA
U.S.A.
hamann@cs.ucdavis.edu

⋆ TU Kaiserslautern
Gottlieb-Daimler-Strasse
67663 Kaiserslautern
Germany
hagen@informatik.uni-kl.de

Abstract: We present a distributed architecture for accelerated pre-processing of remote sensing data for immediate terrain visualization. Interactive 3D visualization approaches for large terrain datasets employ level of detail techniques that require a multi-resolution data representation. The high computational cost of constructing these representations is often not viewed as a major drawback, as it is considered an off-line pre-processing step. This prevents the application of existing methods in the case of changing data, which is becoming increasingly important for a multitude of applications where datasets are being generated, transmitted and must be visualized immediately, such as in disaster management. Our system uses graphics processing units (GPUs) to accelerate the process of generating a multi-resolution representation, achieving sufficient performance to enable on-line visualization on a front-end workstation communicating with a back-end cluster of machines equipped with GPUs. As a reference data structure, we use a quad tree decomposition of the so-called HEALPix sphere parameterization, which is well-suited for spherical terrain rendering. Our system correctly handles overlapping and unregistered mixed-resolution datasets. We demonstrate the efficacy of our approach by applying it to the surface of Mars using both the NASA Mars Orbiter Laser Altimeter and the ESA Mars Express High Resolution Stereo Camera datasets.

Keywords: terrain rendering, pre-processing, gpu

1 Introduction

Interactive three-dimensional terrain visualization has become accessible to a wide audience due to the development of advanced rendering algorithms which can guarantee interactivity at very high resolutions. With the emergence of inexpensive remote sensing platforms such as quadcopters, future challenges will include the integration and visualization of changing data collected from multiple sources such as situation information necessary for disaster management or public security.

Rendering algorithms typically require data to be represented using specific multi-resolution data structures. Due to the static nature of most terrain datasets, the computational effort
for pre-processing remote sensing data into this format is usually not considered critical.

Our contributions are a GPU algorithm to accelerate the conversion of raster maps into a multi-resolution data structure as well as a distributed, online pre-processing framework which uses this algorithm to enable rapid visualization of raster maps within a 3D terrain visualization system. Composition of multiple, potentially overlapping mixed-resolution raster maps is performed on the fly. A quad tree hierarchy on top of the HEALPix [GHB+05] sphere tessellation was used as reference data structure. The benefit of this approach is a significant reduction in turn-around time required to visualize remote sensing data stored in standard raster formats.

For evaluation, we used both Mars Orbiter Laser Altimeter (MOLA)[SZF+01] and High Resolution Stereo Camera (HRSC)[GSP+10] datasets. The MOLA mission has provided a global Digital Elevation Model (DEM) of Mars with a resolution of 460m per pixel for a dataset size of 2.0 GiB. The HRSC datasets, which cover about 33% of the surface, include a high-resolution DEM at an average resolution of 90m per pixel (23.2 GiB) consisting of 1161 individual raster files.

Both datasets were merged into a single database using HRSC data wherever available and MOLA data to fill the gaps. This database was computed on-the-fly and visualized within an interactive spherical terrain rendering system.

2 Related work

Orthorectification is a process to remove perspective distortions in imagery to produce a top-down view of uniform scale. Thomas et al. described a system [TKR+08] for GPU-based orthorectification, which projects oblique imagery onto an existing DEM and produces a corrected orthophoto using a technique related to shadow mapping.

Interactive terrain rendering is a well-established area of research. A survey of important studies is given by Pajarola and Gobbetti [PG07]. Early approaches such as ROAM [DWS+97] perform triangle-level adaptation of the rendered geometry on the CPU while more recent solutions such as the CABTT algorithm [Lev02] extended the triangle bintree data structures by processing geometry in batches to accommodate for shifts in hardware paradigms.

The P-BDAM algorithm [CGG+03] uses a similar type of batching but stores adaptive triangulation within each patch, which are precomputed off-line. The patches are curved to provide spherical rendering. Pre-processing is distributed over multiple machines by subdividing the sphere surface into independent blocks.

The Geometry Clipmaps [LH04] scheme uses a set of nested regular grids which decrease in resolution with increasing distance from the viewer. The terrain database consists of a mipmap pyramid on a regular grid. A toroidal indexing scheme is used to minimize data updates by exploiting temporal coherence.

Planetary-Scale Terrain Composition [KLJ+09] is an interesting approach for real-time composition of unregistered raster maps which defers traditional resampling to the rendering phase. However, it requires a pre-filtered mipmap representation of the data. During
rendering, geometry is generated on the fly using a multi-pass hybrid CPU/GPU iterative subdivision of a base icosahedron.

The subdivision process maintains both spherical and normal texture coordinates for each vertex. Interpolation of spherical coordinates for generated vertices is performed using the haversine geodesic midpoint method which is computationally expensive, especially considering that it has to be evaluated once per frame for each vertex.

Our system also resamples any given data onto a common grid, but this process is only performed once for each generated tile, which is then cached by the front-end visualization system. Furthermore, we use the HEALPix parameterization, which has an explicit projection formula which allows for constant time evaluation of vertex coordinates at any refinement level, avoiding the algorithmic complexity and context change overhead of a multi-pass subdivision scheme.

The Crusta \cite{BCK+11} system uses a forest of quad trees to subdivide the faces of a rhombic triacontahedron. Tree nodes store tiles of 64×64 height samples each. As in \cite{KLJ+09}, the implicit subdivision scheme makes coordinate computation expensive. Our system uses a forest of 12 quad trees on top of the HEALPix tessellation which uses curvilinear patches as base geometry instead.

Lammers et al. \cite{LK10} have presented a system to generate view-dependent geometry on the fly to allow for visualization of fully dynamic datasets. The GPU-based per-frame generation of this triangulation is computationally expensive, however, and does not guarantee interactivity.

3 Pre-processing framework

In the following we will characterize the input data used in our approach, describe the structure of the output database and present an algorithm to construct this database. Subsequently, a GPU implementation of the same algorithm is introduced which is then applied to realize an on-line pre-processing framework. Using this framework, data tiles can be generated on-the-fly by a backend GPU cluster for immediate visualization on a frontend rendering workstation.

3.1 Data representation

The input data processed in our framework are geo-referenced raster DEMs (Digital Elevation Maps). These raster images consist of a regular grid of height values as well as a so-called georeference which is a projection that associates sample coordinates with physical locations on the planetary surface.

For the output coordinate system we chose the HEALPix grid as it uniformly samples the sphere which allows for artifact-free spherical rendering without coordinate singularities. This is achieved by tesselating the sphere into a set of 12 curvilinear base patches which are uniformly subdivided to form a grid hierarchy \cite{GHB+05}.
Figure 1: The HEALPix hierarchical sphere tessellation. All cells on a given subdivision level have equal area and their coordinates can be computed using a closed formula.

We use a quad tree subdivision scheme on top of this hierarchical grid to obtain a multi-resolution database suitable for Level-of-Detail terrain rendering as well as for representing sparse and mixed-resolution datasets. A forest of 12 quad trees represents the base patches and each tree node stores a tile of 255×255 samples for efficient batching in database management and rendering.

3.2 Off-line database construction

In the following we will describe the resampling process which converts a set of raster maps to a terrain database. This requires selecting a quad tree subdivision depth which adequately samples the input raster maps. Considering the tiling used in our approach, the ground area of a single sample at tree depth d for a spherical planet of radius r is given by

$$A_d = \frac{4\pi r^2}{12 \cdot 254^2 \cdot 4^d},$$

which is constant everywhere due to the HEALPix equal-area property. For raster maps, the area represented by an input pixel is usually given. To preserve data resolution, we chose a depth d such that the sample size is equal or small than this value.

The construction process then performs two passes over the given data. In the first pass, the boundary polygon of each raster map is projected to the HEALPix coordinate system to determine the set of intersected leaf nodes. Output file locations are assigned to nodes at this point to optimize the data layout for rendering. Note that this pass requires little I/O as only file header information is required.

In the second pass, each raster map is loaded sequentially and the intersecting leaf nodes are populated. To compute sample values for each node, each sample coordinate pair is first converted from parametric HEALPix space to geographic coordinates. These geographic coordinates are then converted to pixel coordinates within the input raster image, according to the provided georeference (compare Figure 2). The image is then sampled using bilinear interpolation. Note that all coordinate system conversions are performed at double precision as single precision is not sufficient to encode distinct points on the surface at or below meter-scale [KLJ+09].

Note that datasets can assign a special NODATA value to samples which do not have a meaningful value. This is often the case near the boundaries of a raster map when the actual
support is not rectangular in shape. These NODATA values are propagated in interpolation and for sample coordinate outside of the raster image extents, NODATA values are produced as well.

Nodes which already exist in the database are loaded and composited with newly generated data. Each existing sample is replaced by the new sample, unless that new sample was marked as NODATA. This implies that the composition result depends on the order in which input files are processed. Maps which are processed later in the sequence take precedence and replace already existing data. Figure 3 demonstrates the result of combining HRSC with MOLA DEMs.

After producing the finest level of the hierarchy in this manner, the inner nodes of each quad tree are generated by successive downsampling of the leaf nodes.
3.3 GPU-accelerated resampling

To accelerate the resampling process described above, we developed a GPU implementation using the CUDA framework. As before, raster images are processed sequentially. Large images which do not fit into GPU memory are first subdivided into chunks which are then transformed individually.

For processing, each chunk and the associated georeference is uploaded to GPU memory and the set of intersecting tiles is produced. For performance reason, tiles are processed in batches of 64 elements. For each batch, tile coordinates are uploaded and a CUDA kernel is executed which performs projection and resampling. Kernel execution and downloading of result tiles to CPU memory are overlapped using CUDA streams, which allows finished data to be transferred as other tiles are still being processed.

As in the CPU implementation, all coordinate conversions are performed using double precision arithmetic. Downsampling of tiles to generate inner tree nodes is still performed on CPU as it is a relatively inexpensive operation.

3.4 On-line approach

To eliminate the turn-around time for visualizing raster maps, we developed an on-line approach in which tiles needed for visualization are generated on-the-fly by a distributed pre-processing back-end. In contrast to the previous hierarchical construction scheme, which used iterative downsampling to produce inner nodes, the online scheme uses point sampling to directly compute sample values for inner nodes.

To enable the cluster nodes to answer random queries in short time, the datasets to be visualized are loaded into host RAM when the system is started. To optimize memory utilization, input files are distributed equally (by size) across all cluster nodes. As the input files are loaded they are subdivided into chunks and tile coverage for each chunk is computed.

When all data is loaded, the cluster nodes start receiving requests from the front-end. Tile requests which are not covered by any loaded chunk generate an empty reply message. All other requests are handled using the GPU resampling algorithm. To generate a tile it is necessary that the corresponding chunk is resident in GPU memory. However, replacing the currently loaded chunk is expensive because it involves copying the data over a relatively slow bus.

To minimize this paging of chunks, a set of outstanding tile requests is maintained. These tile requests are grouped by the chunk they refer to and each group is processed as a batch. Tiles which are intersected by multiple chunks are included in each corresponding batch. For these tiles, the resulting data is composed as described in 3.2. After processing all outstanding requests, resulting tiles are sent to the rendering front-end and the process is repeated with the set of requests which have been received asynchronously in the meantime.

Once the front-end has received a reply by each cluster node for a given request, it composes the data received and incorporates it into the visible set of tree nodes.
4 Results

For benchmarking, we used a machine equipped with a dual Intel Xeon X5670 hexacore processor with hyper-threading, resulting in 24 “virtual” cores, as well as 48 GiB of host RAM and a NVIDIA Quadro 6000 GPU with six GiB of memory. The cluster used for on-line pre-processing consists of four machines of the same hardware configuration.

4.1 Raw resampling performance

Resampling performance was measured using the set of 1173 HRSC archival DEMs [GSP+10] with a total size of 23.2 GiB. Out of these, 12 files (80 MiB) had to be excluded as they use stereographic projection, which was not supported by our CUDA kernel at that time. Using the formula given in 3.2, we chose a quad tree depth of $d = 8$.

For each input file, the intersecting tile set was computed and all tiles at the finest resolution were generated, measuring total CPU and GPU implementation runtimes for tile generation only. The CPU resampling kernel was parallelized using OpenMP, yielding a measured CPU utilization of 2400%.

The CPU implementation required a total time of 3116.06 seconds in tile generation while the GPU implementation completed the same workload in 126.3 seconds, of which 14.6 seconds were required for data upload. Download of results was not measured separately but is included in the given time. The GPU implementation therefore achieved a speed-up factor of 27.9 for resampling and downloading of results and 24.7 when including the time required for uploading input data.

This result is explained by the fact that the GPU architecture is well-suited for the problem since samples can be evaluated in parallel. For implicitly defined grids as in [KLJ+09] and [BCK+11] this would not be the case. Furthermore, the kernel exhibits a high arithmetic density due to the multiple coordinate system transformations involved for each sample.

4.2 Off-line pre-processing

To measure the impact our improvements have in an actual application, a quad tree representation of the same dataset was constructed on external storage, producing a 120 GiB database. The CPU-based construction required 101 minutes while the GPU variant required 59 minutes, a 70% performance increase. Disk I/O was identified as a bottleneck as a significant fraction of the time (about 50 minutes) was spent waiting for I/O completion.

4.3 On-line pre-processing

To demonstrate on-line pre-processing of mixed resolution datasets, the input dataset used previously was extended by the MOLA MEG128 data, which is two GiB in size. A tree depth of five was chosen for this data.

The data files (26 GiB total) were distributed about equally among the four cluster nodes. The start up time required for all server processes was 70 seconds. The additional time then
(a) Resolution level 0 (after 9.9 seconds)
(b) Resolution level 1 (8.27 seconds later)
(c) Resolution level 2 (4.72 seconds later)
(d) Resolution level 3 (3.03 seconds later)

Figure 4: Top-down view of Valles Marineris showing convergence of image resolution.

required to provide a coarse initial rendering (at tree depth 0) was measured to be about ten seconds. This is explained by the fact that the root nodes of the hierarchy contain all map chunks. Therefore each chunk had to be uploaded in turn to generate the root nodes.

However, performance improved once the initial levels of the tree had been generated and cached by the front-end. See Figure 4 for a timeline of convergence for the first four levels in a top-down view of Valles Marineris. Figure 5 shows the average time the front-end needed to wait for a requested tile, depending on tree depth, collected during an extended browsing session.

Because tree nodes contain a fixed number of height samples and the LoD scheme employed by the front-end attempts to maintain a fixed ratio between number of triangles and screen pixels, the number of visible nodes is approximately constant. As the viewer moves closer to the planetary surface, however, the number of visible chunks decreases and requests for tiles deeper in the tree are serviced faster as paging is reduced.

Statistics revealed an average batch size of 27 tiles, meaning that for every 27 tiles produced one chunk had to be uploaded. Uploading a single chunk took 0.23 seconds on average, while resampling of all tiles in a batch required only 0.017 seconds. Bus bandwidth is therefore clearly a bottleneck in this system.
Figure 5: Average delay between the front-end issuing a tile request and receiving the data.

Considering the speed-up factor established in 4.1, the CPU implementation would be expected to require 0.47 seconds for processing a batch, which is still almost twice the time needed by the GPU solution. The break-even point of similar performance would then be expected at 13 tiles per batch.

Figure 6: Valles Marineris on Mars using both MOLA and HRSC datasets, composited on the fly. Image resolution: 1920 × 1200 pixels, 26.5 million triangles. Starting from an empty cache, image quality converges within 30 seconds.
5 Conclusion and future research possibilities

We have presented an efficient GPU-based approach to pre-process geo-referenced raster maps for spherical terrain rendering. Furthermore, the algorithm was extended to an online pre-processing scheme which enables interactive visualization of large datasets within minutes.

Key to our approach is the assumption that the input data is resident in host RAM. Constructing pre-filtered mipmaps of the input files on external storage as in [KLJ+09] would increase startup time of the system but allow for out-of-core visualization of larger datasets. Mipmap generation can be expected to be fast as it requires only linear I/O, as opposed to construction of a quad tree database.

References

